Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT model could predict cells' response to drugs Work could lead to targeted therapies

31.07.2007
MIT researchers have developed a model that could predict how cells will respond to targeted drug therapies.

Models based on this approach could help doctors make better treatment choices for individual patients, who often respond differently to the same drug, and could help drug developers identify the ideal compounds on which to focus their research.

In addition, the model could help test the effectiveness of drugs for a wide range of diseases, including various kinds of cancer, arthritis and immune system disorders, according to Douglas Lauffenburger, MIT professor of biological engineering and head of the department. Lauffenburger is senior author of a paper on the new model that will appear in the Aug. 2 issue of Nature.

The model is based on similarities in the signaling pathways cells use to process information. Those pathways translate cells' environmental stimuli, such as hormones, drugs or other molecules, into action.

... more about:
»Lauffenburger »epithelial »outcome »stimuli

"Cells undertake behavioral functions-proliferation, differentiation, death-in response to stimuli in their environment," said Lauffenburger. "The signaling pathways are the biomolecular circuits that process that information from the environment and regulate the mechanisms that execute the behavorial functions."

The pathways work via a series of signals in which proteins, known as kinases, activate other cell machinery to achieve a specific result, e.g., expression of certain genes, or actions of cytoskeletal proteins. While the same stimuli can produce diverse responses in different types of cells, the researchers believe they can use the same core pathways to achieve various end results.

Lauffenburger compared a cell's strategy to playing a piano: Just as there are 88 keys that can be played in a vast number of combinations to produce different melodies, cells can use their multiple pathways together in many different combinations to produce different behaviors.

One of the key questions that Lauffenburger's group tackled was understanding the way in which cells interpret the signals they receive and how they arrive at the correct result.

The researchers approached the problem quantitatively, measuring activity levels in five major signaling pathways after colon epithelial cells were exposed to a variety of environmental stimuli. The behavioral outcome-cell death, inflammatory cytokine production, etc., was also measured.

Using that data, they constructed a model correlating outcomes with the combined levels of activity in the multiple pathways. The model was then used to correctly predict what would happen to two other types of epithelial cells when exposed to the same stimuli.

"Cells appear to be adding up information across multiple pathways in a common manner, even though the outcome of the calculations is different because the pathway activities are different," said Lauffenburger.

The researchers also tested the model on a type of blood cell, but in this case, it failed to accurately predict behavioral outcomes. The fact that a model developed with colon epithelial cells only worked for other types of epithelial cells is not surprising because different tissue types process information in different ways, Lauffenburger said.

To develop safe and effective drugs, researchers need to be able to understand how a drug works in the context of a network governing cell functions, not just its effect on an individual molecule. Lauffenburger envisions that drug companies could use this kind of model to test the effects of drugs that inhibit some step in a particular pathway.

The lead authors on the paper are former MIT doctoral students Kathryn Miller-Jensen and Kevin Janes. Joan Brugge, a faculty member at Harvard Medical School, is also an author.

The research was funded by the National Institute of General Medical Sciences Cell Decision Processes Center, the University of California at Santa Barbara-CalTech-MIT Institute for Collaborative Biotechnologies and the MIT Biotechnology Process Engineering Center.

Patti Richards | MIT News Office
Further information:
http://www.mit.edu

Further reports about: Lauffenburger epithelial outcome stimuli

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature

28.06.2017 | Power and Electrical Engineering

Zeolite catalysts pave the road to decentral chemical processes Confined space increases reactivity

28.06.2017 | Life Sciences

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>