Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria dye jeans

27.03.2002


Biotech bugs turn indigo blue in a green way.



Jeans dyed blue by bacteria may soon be swaggering down the streets. Researchers have genetically modified bugs to churn out the indigo pigment used to stain denim. The process could be a greener rival to chemical indigo production.

Originally extracted from plants, indigo dye is now made from coal or oil, with potentially toxic by-products. Bacteria have previously been adapted as alternative indigo manufacturers, but a trace by-product renders jeans an unfashionable shade of red.


Walter Weyler and his colleagues of Genencor International in Palo Alto, California tweaked the genes of the bacterium Escherichia coli to eliminate the red pigment1. The final colour is "indistinguishable" from the globally popular deep blue of the chemically made dye, says Doug Crabb, vice president of Genencor.

The bugs offer an environmentally friendly substitute for chemical synthesis: they use sugar as their raw material and create less waste. "Biological indigo would probably be more environmentally friendly," agrees UK environmental consultant Michael Griffiths. But industry is unlikely to use it until it is also as cheap and effective.

Blue bugs

Biotech indigo starts with a chemical called tryptophan, which bacteria produce naturally. Tryptophan is ideal for conversion to indigo because it already contains the ring-structure at the core of the indigo molecule. A few chemical alterations convert tryptophan into the dye.

Bioindigo E. coli have an enzyme from another microbe engineered into them that converts trytophan into the ring-containing indigo precursor indoxyl; this spontaneously turns into indigo when exposed to air.

Weyler and his team tinkered with their E. coli so that they churned out high levels of the raw material tryptophan. The researchers also inserted a gene that cuts down production of the contaminating red pigment. The efficiency of the process still needs to be improved, however, Crabb concedes.

Before the chemical process was invented, people used plants such as woad and dyer’s knotweed to make indigo: soaking their leaves in water releases indigo’s chemical precursors. How these are converted to indigo is still a mystery. Biochemist Philip John of the University of Reading, UK is heading a project to re-introduce indigo- yielding crops into Europe as a natural alternative to chemical synthesis.

Biotech and plant production would both have to be souped-up to feed the world’s obsession with blue jeans: 16,000 tonnes of dye are made annually, almost all of which is used on denim. "There’s no other dye that will give that characteristic colour," explains John, "It’s got to be indigo."

References

  1. Berry, A. et al. Application of metabolic engineering to improve both the production and use of biotech indigo. Journal of Industrial Microbiology & Biotechnology, 28, 127 - 133, (2002).


HELEN PEARSON | © Nature News Service

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>