Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria dye jeans

27.03.2002


Biotech bugs turn indigo blue in a green way.



Jeans dyed blue by bacteria may soon be swaggering down the streets. Researchers have genetically modified bugs to churn out the indigo pigment used to stain denim. The process could be a greener rival to chemical indigo production.

Originally extracted from plants, indigo dye is now made from coal or oil, with potentially toxic by-products. Bacteria have previously been adapted as alternative indigo manufacturers, but a trace by-product renders jeans an unfashionable shade of red.


Walter Weyler and his colleagues of Genencor International in Palo Alto, California tweaked the genes of the bacterium Escherichia coli to eliminate the red pigment1. The final colour is "indistinguishable" from the globally popular deep blue of the chemically made dye, says Doug Crabb, vice president of Genencor.

The bugs offer an environmentally friendly substitute for chemical synthesis: they use sugar as their raw material and create less waste. "Biological indigo would probably be more environmentally friendly," agrees UK environmental consultant Michael Griffiths. But industry is unlikely to use it until it is also as cheap and effective.

Blue bugs

Biotech indigo starts with a chemical called tryptophan, which bacteria produce naturally. Tryptophan is ideal for conversion to indigo because it already contains the ring-structure at the core of the indigo molecule. A few chemical alterations convert tryptophan into the dye.

Bioindigo E. coli have an enzyme from another microbe engineered into them that converts trytophan into the ring-containing indigo precursor indoxyl; this spontaneously turns into indigo when exposed to air.

Weyler and his team tinkered with their E. coli so that they churned out high levels of the raw material tryptophan. The researchers also inserted a gene that cuts down production of the contaminating red pigment. The efficiency of the process still needs to be improved, however, Crabb concedes.

Before the chemical process was invented, people used plants such as woad and dyer’s knotweed to make indigo: soaking their leaves in water releases indigo’s chemical precursors. How these are converted to indigo is still a mystery. Biochemist Philip John of the University of Reading, UK is heading a project to re-introduce indigo- yielding crops into Europe as a natural alternative to chemical synthesis.

Biotech and plant production would both have to be souped-up to feed the world’s obsession with blue jeans: 16,000 tonnes of dye are made annually, almost all of which is used on denim. "There’s no other dye that will give that characteristic colour," explains John, "It’s got to be indigo."

References

  1. Berry, A. et al. Application of metabolic engineering to improve both the production and use of biotech indigo. Journal of Industrial Microbiology & Biotechnology, 28, 127 - 133, (2002).


HELEN PEARSON | © Nature News Service

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>