Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria dye jeans

27.03.2002


Biotech bugs turn indigo blue in a green way.



Jeans dyed blue by bacteria may soon be swaggering down the streets. Researchers have genetically modified bugs to churn out the indigo pigment used to stain denim. The process could be a greener rival to chemical indigo production.

Originally extracted from plants, indigo dye is now made from coal or oil, with potentially toxic by-products. Bacteria have previously been adapted as alternative indigo manufacturers, but a trace by-product renders jeans an unfashionable shade of red.


Walter Weyler and his colleagues of Genencor International in Palo Alto, California tweaked the genes of the bacterium Escherichia coli to eliminate the red pigment1. The final colour is "indistinguishable" from the globally popular deep blue of the chemically made dye, says Doug Crabb, vice president of Genencor.

The bugs offer an environmentally friendly substitute for chemical synthesis: they use sugar as their raw material and create less waste. "Biological indigo would probably be more environmentally friendly," agrees UK environmental consultant Michael Griffiths. But industry is unlikely to use it until it is also as cheap and effective.

Blue bugs

Biotech indigo starts with a chemical called tryptophan, which bacteria produce naturally. Tryptophan is ideal for conversion to indigo because it already contains the ring-structure at the core of the indigo molecule. A few chemical alterations convert tryptophan into the dye.

Bioindigo E. coli have an enzyme from another microbe engineered into them that converts trytophan into the ring-containing indigo precursor indoxyl; this spontaneously turns into indigo when exposed to air.

Weyler and his team tinkered with their E. coli so that they churned out high levels of the raw material tryptophan. The researchers also inserted a gene that cuts down production of the contaminating red pigment. The efficiency of the process still needs to be improved, however, Crabb concedes.

Before the chemical process was invented, people used plants such as woad and dyer’s knotweed to make indigo: soaking their leaves in water releases indigo’s chemical precursors. How these are converted to indigo is still a mystery. Biochemist Philip John of the University of Reading, UK is heading a project to re-introduce indigo- yielding crops into Europe as a natural alternative to chemical synthesis.

Biotech and plant production would both have to be souped-up to feed the world’s obsession with blue jeans: 16,000 tonnes of dye are made annually, almost all of which is used on denim. "There’s no other dye that will give that characteristic colour," explains John, "It’s got to be indigo."

References

  1. Berry, A. et al. Application of metabolic engineering to improve both the production and use of biotech indigo. Journal of Industrial Microbiology & Biotechnology, 28, 127 - 133, (2002).


HELEN PEARSON | © Nature News Service

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>