Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Links Genetic Mutations to Lupus

30.07.2007
A gene discovered by scientists at Wake Forest University School of Medicine has been linked to lupus and related autoimmune diseases. The finding, reported online in Nature Genetics, is the latest in a series of revelations that shed new light on what goes wrong in human cells to cause the diseases.

“This research is a huge leap toward understanding the cause of lupus and related autoimmune diseases,” said Fred Perrino, Ph.D., a co-author on the paper and a professor of biochemistry at Wake Forest. “There had been few clues before now.”

Perrino, who discovered the gene in 1998, said he suspected it was involved in human disease, but it took a group of researchers from around the world collaborating to put the puzzle together.

“We’ve known that lupus was a complex disease, but now we have a specific protein and a particular cellular process that appears to be one of the causes,” said Perrino. “We’re connecting the dots to understand the biology of what’s going on with the disease.”

... more about:
»Antibodies »DNA »Genetic »Lupus »Perrino »TREX1

In Nature Genetics, lead author Min Ae Lee-Kirsch, M.D., from the Technische Universität Dresden in Dresden, Germany, and colleagues report finding variations of the TREX1 gene discovered by Perrino in patients with systemic lupus erythematosus. The study involved 417 lupus patients from the United Kingdom and Germany. Mutations were found in nine patients with lupus and were absent in 1,712 people without lupus.

"Our data identify a stronger risk for developing lupus in patients that carry variants of the gene," said Lee-Kirsch.

In recent years, the gene was also linked to Aicardi-Goutieres syndrome, a rare neurological disease that causes death in infants, and to chilblain lupus, an inherited disease associated with painful bluish-red skin lesions that occur during cold weather and usually improve in summer. The current research also links it to Sjogren’s syndrome, a form of lupus.

The diseases are all autoimmuine diseases, which means that the body makes antibodies against itself. In lupus, these antibodies cause pain and inflammation in various parts of the body, including the skin, joints, heart, lungs, blood, kidneys and brain. The disease is characterized by pain, heat, redness, swelling and loss of function.

Perrino began studying the protein made by the gene more than 14 years ago.

“We basically cracked open cells to locate the protein and find the gene,” said Perrino. “In the 14 years since, we’ve learned a lot about the protein and how it functions.”

The gene manufactures a protein, also known as TREX1, whose function is to “disassemble” or “unravel” DNA, the strand of genetic material that controls processes within cells. The “unraveling” occurs during the natural process of cells dying and being replaced by new cells. If a cell’s DNA isn’t degraded or unraveled during cell death, the body develops antibodies against it.

“If the TREX1 protein isn’t working to disassemble the DNA, you make antibodies to your own DNA and can end up with a disease like lupus,” said Perrino.

Perrino and colleagues at Wake Forest have been studying the gene and its protein since 1993. Thomas Hollis, Ph.D., an assistant professor of biochemistry at Wake Forest, is credited with solving the structure of both TREX1 and a similar protein, TREX2. Perrino has also developed a way to measure the function of the proteins.

In a study reported in April in the Journal of Biological Chemistry, Hollis and Perrino found that three variations of the gene reduced the activity of the protein by four- to 35,000-fold.

“Now that we have the structure, we can understand how it disassembles DNA and how mutations in the gene may affect that process,” said Hollis.

The researchers hope that understanding more about the gene’s mutations and the structure of the protein may lead to drug treatments to help ensure that mutant copies of the gene are inactive.

Wake Forest University Baptist Medical Center is an academic health system comprised of North Carolina Baptist Hospital and Wake Forest University Health Sciences, which operates the university’s School of Medicine. U.S. News & World Report ranks Wake Forest University School of Medicine 18th in primary care and 44th in research among the nation's medical schools. It ranks 35th in research funding by the National Institutes of Health. Almost 150 members of the medical school faculty are listed in Best Doctors in America.

| newswise
Further information:
http://www1.wfubmc.edu

Further reports about: Antibodies DNA Genetic Lupus Perrino TREX1

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>