Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using stem cells to help heart attack victims

30.07.2007
New research at The University of Nottingham is paving the way for techniques that use stem cells to repair the damage caused by heart attacks.

The research, funded with a grant of £95,000 the Biotechnology and Biological Sciences Research Council (BBSRC), is looking at the process that turns a stem cell into a cardiomyocyte — the beating cell that makes up the heart.

The Nottingham researchers are developing a new system to monitor cardiomyocytes in real time as they differentiate from stem cells into beating heart cells. The system uses electrophysiology to record the electrical properties in a cell and will be the first time it has been used to study cardiomyocyte cells in the UK.

The researchers hope that their research could provide more detailed information on the electrical activity of stem cell derived cardiomyocytes. In the longer term, this could facilitate their use in regenerating the damaged hearts of heart attack victims.

... more about:
»Denning »Stem »cardiomyocyte

Dr Chris Denning, of the University’s Wolfson Centre for Stem Cells, Tissue Engineering & Modelling, said: “Human embryonic stem cells promise unrivalled opportunities. However, they are difficult, time-consuming and expensive to grow in the lab.

"Our understanding of how to convert them into cardiomyocytes is poor. At the moment we only know how to produce a few million cardiomyocytes, but to treat just one heart attack patient, we may need one billion that all function in the correct way."

To help overcome the many challenges that stem cells bring, Dr Denning and co-investigator Professor Stephen Hill plan to engineer a novel system for real-time analysis of cardiomyocytes during early development so their properties are better understood.

The team has already demonstrated that sufficient numbers of stem cell-derived cardiomyocytes can be produced for detailed analysis and they plan to use new 'electrophysiology' systems to record changes in the cells when cultured. Electrophysiology is the study of cells' electrical properties and this is the first time that the method has been used in the UK to study stem cell-cardiomyocyte biology.

Dr Denning added: "This research will enable rapid development of stem cell-derived cardiomyocytes as a tool for understanding the heart and its diseases.

"But before we can consider using stem cells to treat heart-attack patients there are many problems which will take many years to solve. We don't yet know how to deliver the cells to a patient's heart and prevent them being washed away so that they actually stay in the heart and both survive and function.

“It will take many years to overcome these challenges and put stem cell-derived cardiomyocytes into medical usage."

The researchers will also be monitoring how the cells respond to different pharmacological agents in order to improve drug-screening processes and reduce the need for animal testing.

"A key part of the project is to monitor the effects of different drugs on the cells,” said Dr Denning. “At present, only limited information is available on how they respond to pharmacological or gene modulating agents.

"Between 1990 and 2001, 8 different drugs were withdrawn from the market in the USA at an estimated cost of $8billion because they caused unexpected deaths in several hundred patients. Our aim is to reduce such occurrences by having better test methods to test the drugs before they reach the clinic.

"By studying the drugs' effects on the heart cells in the lab, this could reduce the need for animals in clinical trials."

Emma Thorne | alfa
Further information:
http://www.bbsrc.ac.uk
http://www.nottingham.ac.uk

Further reports about: Denning Stem cardiomyocyte

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>