Nottingham biosciences million pound injection

The investment, under the Translation Award programme, will help Nottingham-based RegenTec Ltd to develop commercial products in the rapidly-developing field of regenerative medicine. The company has perfected techniques which could greatly enhance the repair of bone defects and fractures.

RegenTec Ltd was created to build on the world-changing research carried out by scientists at The University of Nottingham, Britain’s ‘University of the Year’. With support from the East Midlands Development Agency, the company has invented a unique material that works with stem cells and biopharmaceuticals to stimulate the regeneration of tissue in patients.

When injected into the body the material forms a highly porous scaffold structure, which encourages new tissues to form.

The unique scaffold mechanism also assists the delivery of stem cells and drugs without compromising their effectiveness. This offers a substantial opportunity to deliver a cure to patients with bone, liver, heart or nerve tissue defects.

Professor Kevin Shakesheff, Chief Scientific Officer at RegenTec, and Director of The Centre for Biomolecular Sciences at The University of Nottingham, said: “The ability to inject these scaffold materials could significantly reduce the need for invasive surgery in tissue repair.

“It will mean that operation and rehabilitation times could come down significantly. After injection, the porous material we use gradually degrades, leaving behind only newly formed bone tissue.”

RegenTec has developed an extensive portfolio of patents and hopes that its injectable technology can reach clinics within three years. Its first product – Injectabone – will be used as a replacement for bone grafting, which can be beset by problems which include a short supply of host bone, chronic post-operative pain, and an increased risk of infection. Injectabone will be launched in the US and European markets for use by orthopaedic surgeons.

The material will then be adapted to help in treatment of many other diseases.

Dr Robin Quirk, Managing Director, said: “Regenerative medicine is a hugely exciting worldwide industry that promises to radically improve many aspects of clinical practice. We have a world-first technology that has a remarkable range of future uses.

“The Wellcome Trust Award is a substantial step forward in ensuring that the UK plays a major role in the commercial and clinical development of regenerative medicine.”

Dr Susan Huxtable, Director of Intellectual Property and Commercialisation at The University of Nottingham, said: “The Wellcome Trust Award is recognition of the hard work and creativity of a large team of scientists who have worked at the University of Nottingham and within Regentec over the past five years.

“They are pioneers in terms of their science, but also in ensuring that the expertise and knowledge honed in a research-intensive university can be translated into commercial enterprise, and make a dynamic contribution to well-being and economic growth. We have enjoyed a record year in attracting third party investment to our portfolio of spin-out companies.”

Media Contact

Emma Thorne alfa

More Information:

http://www.nottingham.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors