Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial Nanopores Take Analyte Pulse

27.07.2007
Reliable nanopores by two-step etching

Resistive pulse sensing represents a very attractive method for identifying and quantifying biomedical species such as drugs, DNA, proteins, and viruses in solution. This method involves measuring changes in the ionic current across a membrane containing a single nanometer-sized pore that separates two electrolyte solutions. As the biological analytes make their way through the pore, they induce transient downward current pulses in the ionic current by transiently blocking the nanopore. The frequency, duration, and magnitude of the current pulse contain telltale information that aids the identification and quantification of the analyte. A biological nanopore, á-hemolysin, supported by a lipid bilayer membrane, works well in the detection of various analytes.

However, a major impediment to this system is its lack of mechanical robustness. Indeed, these biological membranes tend to rupture within a few hours, thus precluding their application in practical sensing devices. Now a team of researchers at the University of Florida have come up with a major breakthrough that will aid the reproducible fabrication of robust synthetic single-nanopore membranes.

The nanopores are prepared by a track-etching method. In this approach, a high-energy particle is passed through a synthetic polymer membrane to create a damage track, which is then chemically etched to convert the track to a pore. A major challenge has been ensuring control and reproducibility of the diameter of the resulting pore. Charles R. Martin and his colleagues have developed a two-step etching method to reproducibly fabricate conical pores in polymer membranes with predictive control of the diameters of the pore openings. The conical pores have two openings on opposite faces: a large-diameter base and a small-diameter tip. Much of the sensing action occurs at the tip, since the bioanalytes block the tip while moving across the membrane. It is thus imperative to control the size of this tip opening.

... more about:
»Analyte »Ion »conical »diameter »etching »nanopore »opening

The researchers use the first etch step to define the base and the tip of the conical pores in the membrane. Subsequently, they use a second etching step, while continuously monitoring the ion current, and stop the etching process when the ion current across the membrane reaches a certain value, corresponding to a well-defined tip diameter. This method allows the predictive and reliable fabrication of conical pores with tip openings varying from 10 to 60 nm, which is in the right regime for detecting biological analytes. Martin and his colleagues have illustrated the dramatic potential of these membranes by detecting a protein analyte, bovine serum albumin, using nanopore sensors with two different tip diameters. The protein more effectively blocks the pores of a nanopore sensor with a tip diameter of 17 nm as compared to a sensor with 27-nm tips, and this is reflected in the current pulse data. “This method may allow us to take artificial nanopore sensors from the bench top to the practical prototype-device development stage”, said Martin, emphasizing that the reproducible preparation of artificial nanopores is critical for the development of resistive-pulse sensors.

Author: Charles R. Martin, University of Florida (USA), http://www.chem.ufl.edu/~crmartin/

Title: A Method for Reproducibly Preparing Synthetic

About Small: Micro and Nano: No small Matter. Science at the nano- and microscale is currently receiving enormous wordwide interest. Published by Wiley-VCH, Small provides the very best forum for experimental and theoretical studies of fundamental and applied interdisciplinary research at these dimensions. Read an attractive mix of peer-reviewed Communications, Reviews, Concepts, Highlights, Essays, and Full Papers.

Small | Small
Further information:
http://www.chem.ufl.edu/~crmartin/
http://pressroom.small-journal.com

Further reports about: Analyte Ion conical diameter etching nanopore opening

More articles from Life Sciences:

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

nachricht When fish swim in the holodeck
22.08.2017 | University of Vienna

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>