Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scratch no more: Gene for itch sensation discovered

27.07.2007
Itching for a better anti-itch remedy" Your wish may soon be granted now that scientists at Washington University School of Medicine in St. Louis have identified the first gene for the itch sensation in the central nervous system. The discovery could rapidly lead to new treatments directly targeting itchiness and providing relief for chronic and severe itching.

The "itch gene" is GRPR (gastrin-releasing peptide receptor), which codes for a receptor found in a very small population of spinal cord nerve cells where pain and itch signals are transmitted from the skin to the brain. The researchers, led by Zhou-Feng Chen, Ph.D., found that laboratory mice that lacked this gene scratched much less than their normal cage-mates when given itchy stimuli.

The laboratory experiments confirmed the connection between GRPR and itching, offering the first evidence of a receptor specific for the itch sensation in the central nervous system. The findings are reported this week in Nature through advance online publication.

Chronic itching is a widespread problem. It can be caused by skin disorders like eczema, or it can stem from a deeper problem such as kidney failure or liver disease. It can be a serious side effect of cancer therapies or powerful painkillers like morphine. For some people, chronic itching can be very disruptive, interfering with sleep or giving rise to scratching that leads to scarring. Effective treatment options for itchy patients are limited.

... more about:
»GRPR »Sensation »Substance »receptor

Historically, scientists regarded itch as just a less intense version of the pain sensation. As a result, research on itching has been somewhat neglected. "Many genes have been identified in the pain pathway," says Chen, associate professor of anesthesiology, psychiatry and molecular biology and pharmacology. "But itch research has lived in the shadow of pain research, and no one knew which gene was responsible for itching in the brain or in the spinal cord until now."

In fact, Chen's team became interested in GRPR because they were looking for genes in the pain pathway. Among potential pain-sensing genes they identified, GRPR stood out because it is present in only a few nerve cells in the spinal cord known to relay pain and/or itch signals to the brain. So they began to study some mice that were missing the GRPR gene to find out how they were different from normal mice.

"The research was a little disappointing at first," Chen says. "The knockout mice seemed to have the same reactions to painful stimuli as normal mice."

But when post-doctoral fellow Yan-Gang Sun, Ph.D., injected the spinal cords of normal mice with a substance that stimulates GRPR, the mice started scratching themselves as if they had a bad itch. "That's when we thought the gene might be involved in the itch sensation," Chen says. "So we began to systematically investigate this possibility."

They studied scratching behavior in two sets of mice — normal mice and GRPR knockout mice. Normal mice scratched vigorously when exposed to a variety of itch-producing substances, but the knockout mice scratched much less. "The fact that the knockout mice still scratched a little suggests there are additional itch receptors," Chen says. "We know of some proteins that are similar to GRPR, so now we're trying to determine if there is functional redundancy in the itching pathway."

GRPR knockout mice had normal reactions to painful stimuli, indicating that pain and itch are mediated by separate sets of genes in the spinal cord. This suggests that drugs can be used to suppress the itch sensation without affecting the pain sensation, according to Chen. And because pain can be an important protective cue that warns of danger, it may be a distinct advantage to have an anti-itch medication that doesn't compromise our pain-sensing capability.

GRPR had been fairly well studied before, but no one could provide a compelling link between GRPR and itching before now. "Scientists have been studying this receptor for more than a decade," Chen says. "One interesting thing they've found is that GRPR is implicated in tumor growth. As a result of research like this, a lot of substances have been made that block the activity of GRPR. So now researchers can study the effect of these agents on the itch sensation and possibly move that research to clinical applications fairly soon."

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: GRPR Sensation Substance receptor

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>