Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprisingly, Chemists Find, Some Solvents Can Alter Chemical Bonds

26.07.2007
New University at Buffalo research demonstrates that some solvents can significantly enhance certain acid-base interactions and strengthen the bonding interaction between two molecules when one is electron-deficient and one is electron-rich.

The research, published recently in the Journal of Physical Chemistry A, suggests a potentially powerful new tool for initiating these interactions, which occur in many important inorganic cluster complexes, including biological enzymes.

"Any time a chemist can focus chemistry at a particular bond and find a new way to weaken chemical bonds in order to initiate chemical reactions, that gives you leverage," said James F. Garvey, Ph.D., UB professor of chemistry and a co-author on the paper.

According to the UB researchers, solvent molecules surrounding Lewis acid-base complexes can significantly affect the strength of chemical bonds within that complex.

... more about:
»Complex »Interaction »Lewis

Lewis acids are molecules that act as electron-pair acceptors, while a Lewis base molecule will act as an electron-pair donor; the base donates electron density to the acid to form an acid-base complex.

"What was surprising was our observation that solvation made that interaction stronger, inducing the base to donate more electron density to the acid, thereby strengthening the bonding interaction," said Garvey.

In the UB studies, the solvent reaction actually changed the nature of the carbon-nitrogen bond between the Lewis acid (a benzene radical cation) and the Lewis base (ammonia).

"We found that when the chemical bond is generated by the mechanism of electron transfer, microsolvation can play a tremendous role in effecting the nature of that bond," said Garvey.

The experimental results were generated through molecular-beam studies of gas-phase ions using a tandem quadrupole mass spectrometer and were supported by calculations performed at UB's Center for Computational Research in the New York State Center of Excellence in Bioinformatics and Life Sciences.

The research was a collaborative effort among organic, physical and theoretical chemists in the UB Department of Chemistry.

In addition to Garvey, co-authors were Marek Freindorf, Ph.D., computational chemist at CCR; Thomas Furlani, Ph.D., professor and CCR director; Robert L. DeLeon, Ph.D., adjunct associate professor; John P. Richard, Ph.D., professor, and Chi-Tung Chiang, graduate student, all of the Department of Chemistry in the UB College of Arts and Sciences.

Funding was provided by grants from the National Institutes of Health.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. UB's more than 27,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

Further reports about: Complex Interaction Lewis

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>