Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprisingly, Chemists Find, Some Solvents Can Alter Chemical Bonds

26.07.2007
New University at Buffalo research demonstrates that some solvents can significantly enhance certain acid-base interactions and strengthen the bonding interaction between two molecules when one is electron-deficient and one is electron-rich.

The research, published recently in the Journal of Physical Chemistry A, suggests a potentially powerful new tool for initiating these interactions, which occur in many important inorganic cluster complexes, including biological enzymes.

"Any time a chemist can focus chemistry at a particular bond and find a new way to weaken chemical bonds in order to initiate chemical reactions, that gives you leverage," said James F. Garvey, Ph.D., UB professor of chemistry and a co-author on the paper.

According to the UB researchers, solvent molecules surrounding Lewis acid-base complexes can significantly affect the strength of chemical bonds within that complex.

... more about:
»Complex »Interaction »Lewis

Lewis acids are molecules that act as electron-pair acceptors, while a Lewis base molecule will act as an electron-pair donor; the base donates electron density to the acid to form an acid-base complex.

"What was surprising was our observation that solvation made that interaction stronger, inducing the base to donate more electron density to the acid, thereby strengthening the bonding interaction," said Garvey.

In the UB studies, the solvent reaction actually changed the nature of the carbon-nitrogen bond between the Lewis acid (a benzene radical cation) and the Lewis base (ammonia).

"We found that when the chemical bond is generated by the mechanism of electron transfer, microsolvation can play a tremendous role in effecting the nature of that bond," said Garvey.

The experimental results were generated through molecular-beam studies of gas-phase ions using a tandem quadrupole mass spectrometer and were supported by calculations performed at UB's Center for Computational Research in the New York State Center of Excellence in Bioinformatics and Life Sciences.

The research was a collaborative effort among organic, physical and theoretical chemists in the UB Department of Chemistry.

In addition to Garvey, co-authors were Marek Freindorf, Ph.D., computational chemist at CCR; Thomas Furlani, Ph.D., professor and CCR director; Robert L. DeLeon, Ph.D., adjunct associate professor; John P. Richard, Ph.D., professor, and Chi-Tung Chiang, graduate student, all of the Department of Chemistry in the UB College of Arts and Sciences.

Funding was provided by grants from the National Institutes of Health.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. UB's more than 27,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

Further reports about: Complex Interaction Lewis

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>