Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug protects brain cells in Huntington's disease model

25.07.2007
A drug used in some countries to treat the symptoms of Huntington’s disease prevents death of brain cells in mice genetically engineered to mimic the hereditary condition, UT Southwestern Medical Center researchers have found.

The research sheds light on the biochemical mechanisms involved in the disease and suggests new avenues of study for preventing brain-cell death in at-risk people before symptoms appear.

“The drug can actually prevent brain cells from dying,” said Dr. Ilya Bezprozvanny, associate professor of physiology at UT Southwestern. “It’s much more important than people thought.”

The study, of which Dr. Bezprozvanny is senior author, appears in the July 25 issue of The Journal of Neuroscience.

... more about:
»Huntington’s »Striatum »TBZ »symptoms

The drug, called tetrabenazine (TBZ), is commercially distributed as Xenazine or Nitoman and blocks the action of dopamine, a compound that some nerve cells use to signal others. TBZ is approved for use in several countries, but not the U.S., to treat uncontrollable muscle movements in Huntington’s and other neurological conditions.

Huntington’s is a fatal genetic condition that usually manifests around ages 30 to 45, according to the Huntington’s Disease Society of America. About one in 10,000 people in America have the disease, with another 200,000 at risk. One of the most famous people with Huntington’s was folk singer Woody Guthrie, who died in 1967.

Huntington’s is caused by a dominant gene, meaning that a person carrying the gene is certain to develop the disease and has a 50 percent chance of passing it on to his or her children. Symptoms include jerky, uncontrollable movements called chorea and deterioration of reasoning abilities and personality. Symptoms begin after many brain cells have already died.

Although a genetic test exists, some people with a family history of Huntington’s choose not to be tested because there is no cure and because they fear loss of health insurance. There are treatments to lessen the symptoms, but there is currently no way to slow or halt the progression of the disease.

In the current study, the UT Southwestern researchers used mice that were genetically engineered to carry the mutant human gene for Huntington’s, causing symptoms and death of brain cells similar to those seen in the disease. The study focused on an area of the brain called the striatum, which plays a critical role in relaying signals concerning motion and higher thought and receives signals from several brain regions.

The striatum is primarily made up of nerve cells called medium spiny neurons, which undergo widespread death in Huntington’s. One major input to the striatum comes from an area called the substantia nigra, which controls voluntary movements and sends signals to the striatum via nerve cells that release dopamine.

The researchers conducted various coordination tests on both normal and genetically manipulated mice. Engineered mice given a drug that increased brain dopamine levels performed worse on these tasks, while TBZ protected against this effect. Most importantly, TBZ appears to reduce significantly cell loss in the striatum of the engineered mice, the scientists report.

“More research is needed to determine whether this protective effect might also be present in humans, and also whether at-risk people would benefit from the drug,” Dr. Bezprozvanny said.

Clinical trials in humans would be very difficult, however, because trials require many participants and there is no easy way to score effectiveness of a presymptomatic drug, Dr. Bezprozvanny said. Thus, his future studies in animals will look at the effectiveness of TBZ given just after initial symptoms have developed. This situation simulates what would probably happen in a human trial, he said.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu
http://www.utsouthwestern.edu/home/news/index.html

Further reports about: Huntington’s Striatum TBZ symptoms

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

Researchers make flexible glass for tiny medical devices

24.03.2017 | Materials Sciences

Laser activated gold pyramids could deliver drugs, DNA into cells without harm

24.03.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>