Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug protects brain cells in Huntington's disease model

25.07.2007
A drug used in some countries to treat the symptoms of Huntington’s disease prevents death of brain cells in mice genetically engineered to mimic the hereditary condition, UT Southwestern Medical Center researchers have found.

The research sheds light on the biochemical mechanisms involved in the disease and suggests new avenues of study for preventing brain-cell death in at-risk people before symptoms appear.

“The drug can actually prevent brain cells from dying,” said Dr. Ilya Bezprozvanny, associate professor of physiology at UT Southwestern. “It’s much more important than people thought.”

The study, of which Dr. Bezprozvanny is senior author, appears in the July 25 issue of The Journal of Neuroscience.

... more about:
»Huntington’s »Striatum »TBZ »symptoms

The drug, called tetrabenazine (TBZ), is commercially distributed as Xenazine or Nitoman and blocks the action of dopamine, a compound that some nerve cells use to signal others. TBZ is approved for use in several countries, but not the U.S., to treat uncontrollable muscle movements in Huntington’s and other neurological conditions.

Huntington’s is a fatal genetic condition that usually manifests around ages 30 to 45, according to the Huntington’s Disease Society of America. About one in 10,000 people in America have the disease, with another 200,000 at risk. One of the most famous people with Huntington’s was folk singer Woody Guthrie, who died in 1967.

Huntington’s is caused by a dominant gene, meaning that a person carrying the gene is certain to develop the disease and has a 50 percent chance of passing it on to his or her children. Symptoms include jerky, uncontrollable movements called chorea and deterioration of reasoning abilities and personality. Symptoms begin after many brain cells have already died.

Although a genetic test exists, some people with a family history of Huntington’s choose not to be tested because there is no cure and because they fear loss of health insurance. There are treatments to lessen the symptoms, but there is currently no way to slow or halt the progression of the disease.

In the current study, the UT Southwestern researchers used mice that were genetically engineered to carry the mutant human gene for Huntington’s, causing symptoms and death of brain cells similar to those seen in the disease. The study focused on an area of the brain called the striatum, which plays a critical role in relaying signals concerning motion and higher thought and receives signals from several brain regions.

The striatum is primarily made up of nerve cells called medium spiny neurons, which undergo widespread death in Huntington’s. One major input to the striatum comes from an area called the substantia nigra, which controls voluntary movements and sends signals to the striatum via nerve cells that release dopamine.

The researchers conducted various coordination tests on both normal and genetically manipulated mice. Engineered mice given a drug that increased brain dopamine levels performed worse on these tasks, while TBZ protected against this effect. Most importantly, TBZ appears to reduce significantly cell loss in the striatum of the engineered mice, the scientists report.

“More research is needed to determine whether this protective effect might also be present in humans, and also whether at-risk people would benefit from the drug,” Dr. Bezprozvanny said.

Clinical trials in humans would be very difficult, however, because trials require many participants and there is no easy way to score effectiveness of a presymptomatic drug, Dr. Bezprozvanny said. Thus, his future studies in animals will look at the effectiveness of TBZ given just after initial symptoms have developed. This situation simulates what would probably happen in a human trial, he said.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu
http://www.utsouthwestern.edu/home/news/index.html

Further reports about: Huntington’s Striatum TBZ symptoms

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>