Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug protects brain cells in Huntington's disease model

25.07.2007
A drug used in some countries to treat the symptoms of Huntington’s disease prevents death of brain cells in mice genetically engineered to mimic the hereditary condition, UT Southwestern Medical Center researchers have found.

The research sheds light on the biochemical mechanisms involved in the disease and suggests new avenues of study for preventing brain-cell death in at-risk people before symptoms appear.

“The drug can actually prevent brain cells from dying,” said Dr. Ilya Bezprozvanny, associate professor of physiology at UT Southwestern. “It’s much more important than people thought.”

The study, of which Dr. Bezprozvanny is senior author, appears in the July 25 issue of The Journal of Neuroscience.

... more about:
»Huntington’s »Striatum »TBZ »symptoms

The drug, called tetrabenazine (TBZ), is commercially distributed as Xenazine or Nitoman and blocks the action of dopamine, a compound that some nerve cells use to signal others. TBZ is approved for use in several countries, but not the U.S., to treat uncontrollable muscle movements in Huntington’s and other neurological conditions.

Huntington’s is a fatal genetic condition that usually manifests around ages 30 to 45, according to the Huntington’s Disease Society of America. About one in 10,000 people in America have the disease, with another 200,000 at risk. One of the most famous people with Huntington’s was folk singer Woody Guthrie, who died in 1967.

Huntington’s is caused by a dominant gene, meaning that a person carrying the gene is certain to develop the disease and has a 50 percent chance of passing it on to his or her children. Symptoms include jerky, uncontrollable movements called chorea and deterioration of reasoning abilities and personality. Symptoms begin after many brain cells have already died.

Although a genetic test exists, some people with a family history of Huntington’s choose not to be tested because there is no cure and because they fear loss of health insurance. There are treatments to lessen the symptoms, but there is currently no way to slow or halt the progression of the disease.

In the current study, the UT Southwestern researchers used mice that were genetically engineered to carry the mutant human gene for Huntington’s, causing symptoms and death of brain cells similar to those seen in the disease. The study focused on an area of the brain called the striatum, which plays a critical role in relaying signals concerning motion and higher thought and receives signals from several brain regions.

The striatum is primarily made up of nerve cells called medium spiny neurons, which undergo widespread death in Huntington’s. One major input to the striatum comes from an area called the substantia nigra, which controls voluntary movements and sends signals to the striatum via nerve cells that release dopamine.

The researchers conducted various coordination tests on both normal and genetically manipulated mice. Engineered mice given a drug that increased brain dopamine levels performed worse on these tasks, while TBZ protected against this effect. Most importantly, TBZ appears to reduce significantly cell loss in the striatum of the engineered mice, the scientists report.

“More research is needed to determine whether this protective effect might also be present in humans, and also whether at-risk people would benefit from the drug,” Dr. Bezprozvanny said.

Clinical trials in humans would be very difficult, however, because trials require many participants and there is no easy way to score effectiveness of a presymptomatic drug, Dr. Bezprozvanny said. Thus, his future studies in animals will look at the effectiveness of TBZ given just after initial symptoms have developed. This situation simulates what would probably happen in a human trial, he said.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu
http://www.utsouthwestern.edu/home/news/index.html

Further reports about: Huntington’s Striatum TBZ symptoms

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>