Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Switchable Adhesive

24.07.2007
Gel- and polymer-coated surfaces stick together and separate in response to an environmental stimulus

Two surfaces stick together, separate, and stick together again—on command. This discovery by a team of researchers from the Universities of Sheffield (UK) and Bayreuth contradicts our day-to-day experience. In the animal kingdom, geckos can climb up vertical inclines, displaying an incredible switchable adhesion as they do so. Insects also use another form of switchable adhesion to sit on your ceiling and then fly off before you climb up on your chair with a rolled-up newspaper. How these animals can switch off and on adhesion is not yet understood in detail. But the scientists led by Mark Geoghegan reveal the secret of their “intelligent” adhesion in the journal Angewandte Chemie.

One of the surfaces involved consists of a polyacid gel, a three-dimensionally cross-linked polymer containing many acid groups. This polymer network is so heavily soaked in liquid that it forms a solid, gelatinous mass. The second surface is a silicon chip onto which a polybase has been deposited. This polybase consists of polymer chains that stretch brush-like from the support and contain many basic groups. In water or slightly acidic solution, the acidic groups carry a positive charge while the basic groups are negatively charged; this causes them to attract each other. In addition to this electrostatic attraction, hydrogen bonds are also formed, which causes the two surfaces to be tightly stuck together.

If the surrounding solution is made more strongly acidic (a pH value of about 1), the bonds break up, the basic groups lose their charge, and the electrostatic attraction lets up. The two surfaces can then be slowly and carefully separated from each other without any damage. This detachment is reversible: If the pH value is raised again, making the solution less acidic, the gel and “brush” stick to each other once again. This cycle can be repeated many times by simply changing the pH value.

... more about:
»Stick »acidic »adhesion

Possible applications for such “smart” surface pairs include microelectromagnetic components (actuators), components for microfluidic systems, or carriers for pharmacological agents that could release their cargo under specific physiological conditions.

Author: Mark Geoghegan, University of Sheffield (UK), http://homepage.mac.com/mag16/

Title: Controlling Network–Brush Interactions to Achieve Switchable Adhesion

Angewandte Chemie International Edition, doi: 10.1002/anie.200701796

Mark Geoghegan | Angewandte Chemie
Further information:
http://homepage.mac.com/mag16/
http://pressroom.angewandte.org

Further reports about: Stick acidic adhesion

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>