Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Switchable Adhesive

Gel- and polymer-coated surfaces stick together and separate in response to an environmental stimulus

Two surfaces stick together, separate, and stick together again—on command. This discovery by a team of researchers from the Universities of Sheffield (UK) and Bayreuth contradicts our day-to-day experience. In the animal kingdom, geckos can climb up vertical inclines, displaying an incredible switchable adhesion as they do so. Insects also use another form of switchable adhesion to sit on your ceiling and then fly off before you climb up on your chair with a rolled-up newspaper. How these animals can switch off and on adhesion is not yet understood in detail. But the scientists led by Mark Geoghegan reveal the secret of their “intelligent” adhesion in the journal Angewandte Chemie.

One of the surfaces involved consists of a polyacid gel, a three-dimensionally cross-linked polymer containing many acid groups. This polymer network is so heavily soaked in liquid that it forms a solid, gelatinous mass. The second surface is a silicon chip onto which a polybase has been deposited. This polybase consists of polymer chains that stretch brush-like from the support and contain many basic groups. In water or slightly acidic solution, the acidic groups carry a positive charge while the basic groups are negatively charged; this causes them to attract each other. In addition to this electrostatic attraction, hydrogen bonds are also formed, which causes the two surfaces to be tightly stuck together.

If the surrounding solution is made more strongly acidic (a pH value of about 1), the bonds break up, the basic groups lose their charge, and the electrostatic attraction lets up. The two surfaces can then be slowly and carefully separated from each other without any damage. This detachment is reversible: If the pH value is raised again, making the solution less acidic, the gel and “brush” stick to each other once again. This cycle can be repeated many times by simply changing the pH value.

... more about:
»Stick »acidic »adhesion

Possible applications for such “smart” surface pairs include microelectromagnetic components (actuators), components for microfluidic systems, or carriers for pharmacological agents that could release their cargo under specific physiological conditions.

Author: Mark Geoghegan, University of Sheffield (UK),

Title: Controlling Network–Brush Interactions to Achieve Switchable Adhesion

Angewandte Chemie International Edition, doi: 10.1002/anie.200701796

Mark Geoghegan | Angewandte Chemie
Further information:

Further reports about: Stick acidic adhesion

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>