Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit fly gene from 'out of nowhere' may change ideas about how new genes are formed

24.07.2007
Scientists thought that most new genes were formed from existing genes, but Cornell researchers have discovered a gene in some fruit flies that appears to be unrelated to other genes in any known genome.

The new gene, called hydra, exists in only a small number of species of Drosophila fruit flies, which suggests it was created about 13 million years ago, when these melanogaster subgroup species diverged from a common ancestor.

And early evidence indicates that the new gene is functional (as opposed to being nonfunctional "junk" DNA) and is likely to express a protein involved in late stages of sperm cell development (spermatogenesis). This finding is consistent with work of other scientists who are discovering that many of the most recently formed functional genes in any species also are expressed in male testes and appear related to spermatogenesis.

"This is a de novo -- 'out of nowhere' -- gene," said Hsiao-Pei Yang, a senior research associate in Cornell's Department of Molecular Biology and Genetics and senior author of a paper published in the July 6 issue of the online journal PLoS Genetics (Public Library of Science Genetics). "People used to think that new genes were always formed from tinkering with other genes, but with this gene we can find no homologues [genes with a similar structure]. You cannot find any related genes in the fly genome or any species' genome, and that is what is unique."

... more about:
»Genome »Transposon »sequence

Yang conducted part of this research while at the National Yang-Ming University in Taiwan and part of the work in collaboration with Cornell's Daniel Barbash, assistant professor of molecular biology and genetics.

The researchers do not yet know how the hydra gene was created, but they speculate that the gene may have developed from a piece of DNA junk called a transposable element (also known as a "jumping gene"), which may have been inserted into the genome by a virus. These transposons are known to copy and insert themselves into DNA sequences. For example, one theory is that when a transposon sits next to a gene and then jumps to a new location, it carries part of the gene sequence it was next to and inserts it in the new location. Often, transposable elements appear to have no function or may be harmful and are eliminated by natural selection, but researchers are beginning to think transposons may be a source for creating new functional genes as well.

The hydra gene is named after the Greek mythological beast that had a hound's body and nine snake heads, because it has nine duplicated first exons (sections of the gene that contain protein-coding information). Each of these exons may serve as alternative starting positions for the gene to become activated. The researchers found that most of these exons had a sequence for a transposable element sitting right next to it. Duplicated sequences generated by transposons may be part of the mechanism for creating new genes, as the duplications provide more chances for a gene to evolve.

The work was funded by the National Sciences Council in Taiwan.

Press Relations Office | EurekAlert!
Further information:
http://www.cornell.edu

Further reports about: Genome Transposon sequence

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>