Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists unravel feeding habits of flying reptiles

24.07.2007
Scientists at the University of Sheffield, collaborating with colleagues at the Universities of Portsmouth and Reading, have taken a step back in time and provided a new insight into the lifestyle of a prehistoric flying reptile.

Using new physical and mathematical modelling, Dr Stuart Humphries from the University of Sheffield, along with scientists from the Universities of Portsmouth and Reading, has shown that suggestions that extinct pterosaurs gathered their food by ‘skimming’ the surface of the ocean with their beaks are inaccurate.

Previous studies have suggested that some pterosaurs may have fed like modern-day ‘skimmers’, a rare group of shorebirds, belonging to the Rynchops group. These sea-birds fly along the surface of lakes and estuaries scooping up small fish and crustaceans with their submerged lower jaw. Inferred structural similarities between pterosaur and Rynchops jaws had previously been used to suggest that some pterosaur were anatomically suited for skimming.

However, new evidence provided by the researchers suggests that the fossilised jaws of suggested pterosaur skimmers mean that these creatures may have found it impossible to feed in this way.

... more about:
»Reptile »Rynchops »extinct »pterosaur

According to the research, the thicker jaws of pterosaurs would make it difficult for them to deflect water the way the extraordinarily slim bills of Rynchops do. By combining experiments using life-size models of pterosaur and skimmer jaws with hydrodynamic and aerodynamic modelling, the researchers demonstrated that skimming requires more energy than the giant reptilian fliers were likely able to supply.

The researchers established that pterosaurs weighing more than one kilogram would not have been able to skim at all. They also found that anatomical comparisons between the highly-specialised skull of Rynchops and those of postulated skimming pterosaurs suggest that even smaller forms were poorly adapted for skim-feeding. They believe that the pterosaurs they studied would have in fact fed using more conventional methods.

The size and body plan of these long-extinct animals can be reliably reconstructed from fossils, as can their time of existence on Earth. As a result of this evidence, scientists know that pterosaurs had membrane-covered wings like bats. Their extremely light, hollow skeletons were presumably filled with air, allowing even pterosaurs with wingspans in excess of 10 m to take to the skies, which they began to do as far back as 230 million years ago.

Discovering the ecological traits of these reptiles though is far more complicated. One way scientists currently gain an insight into ecological traits of extinct animals is by comparing fossilized morphological (shape and form) features to those of living animals.

However, as this new research shows, these records do not provide direct evidence of behaviour and ecology. Dr Humphries, from the Department of Animal and Plant Sciences, said: “Our results illustrate the pitfalls involved in using morphological data to study the ecology of extinct animals, including dinosaurs and pterodactyles.”

“While we acknowledge that these comparisons do offer clues to the ecological traits of extinct creatures, we hope that our research shows that biomechanical analysis is also needed to supplement such efforts in order to paint a more realistic portrait of the prehistoric landscape."

Lindsey Bird | EurekAlert!
Further information:
http://www.plosbiology.org
http://www.ucmp.berkeley.edu/diapsids/pterosauria.html

Further reports about: Reptile Rynchops extinct pterosaur

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>