Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists unravel feeding habits of flying reptiles

Scientists at the University of Sheffield, collaborating with colleagues at the Universities of Portsmouth and Reading, have taken a step back in time and provided a new insight into the lifestyle of a prehistoric flying reptile.

Using new physical and mathematical modelling, Dr Stuart Humphries from the University of Sheffield, along with scientists from the Universities of Portsmouth and Reading, has shown that suggestions that extinct pterosaurs gathered their food by ‘skimming’ the surface of the ocean with their beaks are inaccurate.

Previous studies have suggested that some pterosaurs may have fed like modern-day ‘skimmers’, a rare group of shorebirds, belonging to the Rynchops group. These sea-birds fly along the surface of lakes and estuaries scooping up small fish and crustaceans with their submerged lower jaw. Inferred structural similarities between pterosaur and Rynchops jaws had previously been used to suggest that some pterosaur were anatomically suited for skimming.

However, new evidence provided by the researchers suggests that the fossilised jaws of suggested pterosaur skimmers mean that these creatures may have found it impossible to feed in this way.

... more about:
»Reptile »Rynchops »extinct »pterosaur

According to the research, the thicker jaws of pterosaurs would make it difficult for them to deflect water the way the extraordinarily slim bills of Rynchops do. By combining experiments using life-size models of pterosaur and skimmer jaws with hydrodynamic and aerodynamic modelling, the researchers demonstrated that skimming requires more energy than the giant reptilian fliers were likely able to supply.

The researchers established that pterosaurs weighing more than one kilogram would not have been able to skim at all. They also found that anatomical comparisons between the highly-specialised skull of Rynchops and those of postulated skimming pterosaurs suggest that even smaller forms were poorly adapted for skim-feeding. They believe that the pterosaurs they studied would have in fact fed using more conventional methods.

The size and body plan of these long-extinct animals can be reliably reconstructed from fossils, as can their time of existence on Earth. As a result of this evidence, scientists know that pterosaurs had membrane-covered wings like bats. Their extremely light, hollow skeletons were presumably filled with air, allowing even pterosaurs with wingspans in excess of 10 m to take to the skies, which they began to do as far back as 230 million years ago.

Discovering the ecological traits of these reptiles though is far more complicated. One way scientists currently gain an insight into ecological traits of extinct animals is by comparing fossilized morphological (shape and form) features to those of living animals.

However, as this new research shows, these records do not provide direct evidence of behaviour and ecology. Dr Humphries, from the Department of Animal and Plant Sciences, said: “Our results illustrate the pitfalls involved in using morphological data to study the ecology of extinct animals, including dinosaurs and pterodactyles.”

“While we acknowledge that these comparisons do offer clues to the ecological traits of extinct creatures, we hope that our research shows that biomechanical analysis is also needed to supplement such efforts in order to paint a more realistic portrait of the prehistoric landscape."

Lindsey Bird | EurekAlert!
Further information:

Further reports about: Reptile Rynchops extinct pterosaur

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>