Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists unravel feeding habits of flying reptiles

24.07.2007
Scientists at the University of Sheffield, collaborating with colleagues at the Universities of Portsmouth and Reading, have taken a step back in time and provided a new insight into the lifestyle of a prehistoric flying reptile.

Using new physical and mathematical modelling, Dr Stuart Humphries from the University of Sheffield, along with scientists from the Universities of Portsmouth and Reading, has shown that suggestions that extinct pterosaurs gathered their food by ‘skimming’ the surface of the ocean with their beaks are inaccurate.

Previous studies have suggested that some pterosaurs may have fed like modern-day ‘skimmers’, a rare group of shorebirds, belonging to the Rynchops group. These sea-birds fly along the surface of lakes and estuaries scooping up small fish and crustaceans with their submerged lower jaw. Inferred structural similarities between pterosaur and Rynchops jaws had previously been used to suggest that some pterosaur were anatomically suited for skimming.

However, new evidence provided by the researchers suggests that the fossilised jaws of suggested pterosaur skimmers mean that these creatures may have found it impossible to feed in this way.

... more about:
»Reptile »Rynchops »extinct »pterosaur

According to the research, the thicker jaws of pterosaurs would make it difficult for them to deflect water the way the extraordinarily slim bills of Rynchops do. By combining experiments using life-size models of pterosaur and skimmer jaws with hydrodynamic and aerodynamic modelling, the researchers demonstrated that skimming requires more energy than the giant reptilian fliers were likely able to supply.

The researchers established that pterosaurs weighing more than one kilogram would not have been able to skim at all. They also found that anatomical comparisons between the highly-specialised skull of Rynchops and those of postulated skimming pterosaurs suggest that even smaller forms were poorly adapted for skim-feeding. They believe that the pterosaurs they studied would have in fact fed using more conventional methods.

The size and body plan of these long-extinct animals can be reliably reconstructed from fossils, as can their time of existence on Earth. As a result of this evidence, scientists know that pterosaurs had membrane-covered wings like bats. Their extremely light, hollow skeletons were presumably filled with air, allowing even pterosaurs with wingspans in excess of 10 m to take to the skies, which they began to do as far back as 230 million years ago.

Discovering the ecological traits of these reptiles though is far more complicated. One way scientists currently gain an insight into ecological traits of extinct animals is by comparing fossilized morphological (shape and form) features to those of living animals.

However, as this new research shows, these records do not provide direct evidence of behaviour and ecology. Dr Humphries, from the Department of Animal and Plant Sciences, said: “Our results illustrate the pitfalls involved in using morphological data to study the ecology of extinct animals, including dinosaurs and pterodactyles.”

“While we acknowledge that these comparisons do offer clues to the ecological traits of extinct creatures, we hope that our research shows that biomechanical analysis is also needed to supplement such efforts in order to paint a more realistic portrait of the prehistoric landscape."

Lindsey Bird | EurekAlert!
Further information:
http://www.plosbiology.org
http://www.ucmp.berkeley.edu/diapsids/pterosauria.html

Further reports about: Reptile Rynchops extinct pterosaur

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>