Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Probing biology's dark matter

24.07.2007
A typical human mouth teems with as many as 700 different species of microbes.

A handful of these have been specifically implicated in promoting gum disease, dental cavities, and bad breath, but for the most part, the make-up of this complex ecosystem and its impact on human health remain largely unexplored. A new device created by Howard Hughes Medical Institute (HHMI) researchers, however, may make some of the most reclusive members of this and other microscopic communities much more accessible for laboratory study.

The vast majority of microbes are notoriously resistant to growing in laboratory cultures because they are so intricately linked to their own unique ecosystems. Microbiologists have coaxed less than one percent of the bacterial species that inhabit natural environments into growing in culture. But a microfluidics device created by Howard Hughes Medical Institute investigator Stephen R. Quake and colleagues at Stanford University– an intricate system of miniscule valves and chambers -- may help scientists who want to identify and characterize new microbes circumvent the need to culture them at all.

Research on the device published in the July 9, 2007, issue of the Proceedings of the National Academy of Sciences (PNAS) has far-reaching implications for the rapidly developing field of microbial ecology, as well as advancing microfluidics technologies, which could do for biology what silicon chips did for electronics. Quake and his colleagues have already used the device to analyze a rare bacteria found in the human mouth, using just a single cell.

Various methods have given scientists a glimpse of the profound diversity that characterizes different microbial worlds. One approach is to look for variations in the sequence of a specific gene found in all microorganisms; another is a complete inventory of all the pooled genes in a microbial community. These types of studies, however, yield few insights into the character of individual members of a microbial ecosystem, leaving most species almost entirely enigmatic.

Those unstudied organisms are biology’s dark matter, Quake says. Like the dark matter that astronomers can only infer must exist in the universe, these organisms have never been studied directly. Quake and his colleagues hope their new technology will change that.

“We are hoping to open a whole new chapter in how one understands the microbial universe,” Quake said. “Microfluidic tools can give us direct access to this dark matter,” Quake says.

Quake’s research lies at the nexus of physics, biology, and biotechnology. His microfluidics chips, which he designs to tackle problems in fields including structural genomics, systems biology, microbial ecology, and synthetic chemistry, are akin to having a fully automated laboratory on a postage stamp-sized wafer. Remember the early days of electronics with all of those big vacuum tubes and wires" Next came the transistor and finally the silicon chip, which dramatically revolutionized computers and modern electronics. Microfluidics is following the track of silicon chips and promises to revolutionize biology in the same manner.

The microfluidic chip designed by Quake and his colleagues for the current study is equipped with tiny chambers and valves that allow researchers to isolate microbes at the nanoliter scale. Because each microbe is isolated in a vanishingly small volume of liquid, the concentration of its genetic material within that solution is actually quite high – meaning Quake and his colleagues can easily amplify and analyze the genome of an individual cell, eliminating the need to persuade the organism to multiply in a laboratory culture. The chip offers the potential to discover untold new species of microbes lurking within deep sea vents, ordinary dirt, toxic sludge, or virtually any environment.

To demonstrate the power of the new device, the scientists first used it to target a possible new phylum, of which one member is a rod-shaped bacterium that live between the gums and teeth of humans. The candidate phylum, called TM7, has no cultivated or sequenced members. The scientists demonstrated that they could inject a solution containing multiple types of microbes into a chip, and manipulate tiny valves to direct individual rod-shaped bacteria into miniature chambers. Once individual microbes were isolated, the researchers could extract the DNA and amplify it using routine methods.

In this way, the researchers were able to sequence and assemble more than 1,000 genes, providing insight into the physiology of this previously unstudied group of bacteria. Most TM7 genes, they found, had remarkably little similarity to genes in known bacterial groups. But some of the genes hinted at interesting aspects of the organism’s biology, such as an unusual gliding motion that groups of TM7 bacteria might use to get around, and a gene shared with bacteria known to cause chronic inflammation.

Just as importantly, the researchers say, they have demonstrated the success of their new technology in analyzing a rare component of a complex microbial community – and there is plenty more to explore. Quake’s team has already begun using the chip to isolate, identify, and sequence communities of microbes that reside in termite hindguts, and his lab at Stanford is custom building chips for other scientists interested in pursuing any culture-resistant microbe or discovering the dark matter of a specific environment.

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

Further reports about: Laboratory culture dark dark matter individual matter microbial microfluidic

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>