Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Probing biology's dark matter

A typical human mouth teems with as many as 700 different species of microbes.

A handful of these have been specifically implicated in promoting gum disease, dental cavities, and bad breath, but for the most part, the make-up of this complex ecosystem and its impact on human health remain largely unexplored. A new device created by Howard Hughes Medical Institute (HHMI) researchers, however, may make some of the most reclusive members of this and other microscopic communities much more accessible for laboratory study.

The vast majority of microbes are notoriously resistant to growing in laboratory cultures because they are so intricately linked to their own unique ecosystems. Microbiologists have coaxed less than one percent of the bacterial species that inhabit natural environments into growing in culture. But a microfluidics device created by Howard Hughes Medical Institute investigator Stephen R. Quake and colleagues at Stanford University– an intricate system of miniscule valves and chambers -- may help scientists who want to identify and characterize new microbes circumvent the need to culture them at all.

Research on the device published in the July 9, 2007, issue of the Proceedings of the National Academy of Sciences (PNAS) has far-reaching implications for the rapidly developing field of microbial ecology, as well as advancing microfluidics technologies, which could do for biology what silicon chips did for electronics. Quake and his colleagues have already used the device to analyze a rare bacteria found in the human mouth, using just a single cell.

Various methods have given scientists a glimpse of the profound diversity that characterizes different microbial worlds. One approach is to look for variations in the sequence of a specific gene found in all microorganisms; another is a complete inventory of all the pooled genes in a microbial community. These types of studies, however, yield few insights into the character of individual members of a microbial ecosystem, leaving most species almost entirely enigmatic.

Those unstudied organisms are biology’s dark matter, Quake says. Like the dark matter that astronomers can only infer must exist in the universe, these organisms have never been studied directly. Quake and his colleagues hope their new technology will change that.

“We are hoping to open a whole new chapter in how one understands the microbial universe,” Quake said. “Microfluidic tools can give us direct access to this dark matter,” Quake says.

Quake’s research lies at the nexus of physics, biology, and biotechnology. His microfluidics chips, which he designs to tackle problems in fields including structural genomics, systems biology, microbial ecology, and synthetic chemistry, are akin to having a fully automated laboratory on a postage stamp-sized wafer. Remember the early days of electronics with all of those big vacuum tubes and wires" Next came the transistor and finally the silicon chip, which dramatically revolutionized computers and modern electronics. Microfluidics is following the track of silicon chips and promises to revolutionize biology in the same manner.

The microfluidic chip designed by Quake and his colleagues for the current study is equipped with tiny chambers and valves that allow researchers to isolate microbes at the nanoliter scale. Because each microbe is isolated in a vanishingly small volume of liquid, the concentration of its genetic material within that solution is actually quite high – meaning Quake and his colleagues can easily amplify and analyze the genome of an individual cell, eliminating the need to persuade the organism to multiply in a laboratory culture. The chip offers the potential to discover untold new species of microbes lurking within deep sea vents, ordinary dirt, toxic sludge, or virtually any environment.

To demonstrate the power of the new device, the scientists first used it to target a possible new phylum, of which one member is a rod-shaped bacterium that live between the gums and teeth of humans. The candidate phylum, called TM7, has no cultivated or sequenced members. The scientists demonstrated that they could inject a solution containing multiple types of microbes into a chip, and manipulate tiny valves to direct individual rod-shaped bacteria into miniature chambers. Once individual microbes were isolated, the researchers could extract the DNA and amplify it using routine methods.

In this way, the researchers were able to sequence and assemble more than 1,000 genes, providing insight into the physiology of this previously unstudied group of bacteria. Most TM7 genes, they found, had remarkably little similarity to genes in known bacterial groups. But some of the genes hinted at interesting aspects of the organism’s biology, such as an unusual gliding motion that groups of TM7 bacteria might use to get around, and a gene shared with bacteria known to cause chronic inflammation.

Just as importantly, the researchers say, they have demonstrated the success of their new technology in analyzing a rare component of a complex microbial community – and there is plenty more to explore. Quake’s team has already begun using the chip to isolate, identify, and sequence communities of microbes that reside in termite hindguts, and his lab at Stanford is custom building chips for other scientists interested in pursuing any culture-resistant microbe or discovering the dark matter of a specific environment.

Jennifer Michalowski | EurekAlert!
Further information:

Further reports about: Laboratory culture dark dark matter individual matter microbial microfluidic

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>