Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Developing nanotechnology to test food quality

23.07.2007
Researchers have created two tiny instruments capable of detecting a range of contaminants, from molecules to whole bacteria, in food and water, according to an article in the August issue of Microbiology Today.

Cantilevers are miniature diving boards that measure 200 micrometers long and 40 micrometers wide, about half the width of a human hair. Two cantilevers are placed in a sensor and liquid is passed through them. When the molecule or microbe that is being looked for binds to its surface, the board bends and its electrical resistance is altered. Detection is achieved by measuring the change in resistance.

The device can be designed to search for specific things, for example, if the organism to be detected was E. coli, the cantilever could be coated in antibodies specific to E. coli cells. Many different molecules or organisms can also be recognized simultaneously. “The sensor can be expanded to contain several cantilevers, each coated with a specific detector molecule” says Professor Anja Boisen.

Lid devices also have a flexible board or ‘lid’ but it is placed on top of a tiny box that contains marker molecules, which produce colour visible to the naked eye. An organism, for example, binds to the lid, which then opens and releases the colour, indicating the presence of the organism. This can also be achieved by coating the board with ‘food’ for bacteria instead of binding molecules, so deflection occurs when the coating is removed. It can therefore be used to measure bacterial activity. The device is contained in a 1cm plastic box so, like the cantilever, it is portable.

... more about:
»Device »Quality »Sensor »cantilever

Cantilevers and lid devices may soon be available to consumers. “We use processes where the cantilevers are fabricated by etching a thin silicon wafer three-dimensionally” says Professor Anja Boisen. “The procedure is suitable for mass production and it might be possible to make sensors so cheaply that they can be disposable.”

The applications for this new technology are abundant. The sensors can detect DNA, so may be used to test for human genetic diseases. They are also extremely sensitive and can measure deflections of just 1 nanometre, so are able to detect the presence of very small molecules. Conversely, whole bacteria and even parts of bacteria can be identified, making the sensors ideal for testing the quality of water and food samples.

“The lid device could be included in food packaging since it requires no external energy and is cheap to make. When a food is infected, the control unit in the plastic wrapping becomes coloured. Thus a simple colour indicator can show the quality of the food.”

Janet Hurst | alfa
Further information:
http://www.sgm.ac.uk
http://www.sgm.ac.uk/pubs/micro_today/current.cfm

Further reports about: Device Quality Sensor cantilever

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>