Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MSU researchers JAZ (zed) about plant resistance discovery

20.07.2007
The mystery of how a major plant hormone works to defend plants against invaders has been revealed, thanks to collaborative research efforts by Michigan State University and Washington State University.

While scientists have known for years that a common plant hormone, jasmonate, plays a crucial role in plant development and function, the steps that convert the hormone’s signal into genetic and cellular action have remained elusive. MSU scientists Sheng Yang He and Gregg Howe were part of two back-to-back discoveries that solved the mystery, described in the July 18 online issue of the journal Nature.

Jasmonate is the last major plant hormone to have its signaling process revealed. Initial research by WSU researchers identified the family of proteins – dubbed JAZ proteins – that are critical to plants receiving and responding to the jasmonate signal.

“In a healthy environment, these JAZ proteins are doing their job – they’re blocking all the defenses and signals, because they are not needed,” said Howe, an MSU professor of biochemistry and molecular biology. “But when a plant becomes stressed by an insect or pathogen, the plant needs to respond very quickly if it’s going to be successful in warding off the attacker.”

... more about:
»Howe »JAZ »MSU »jasmonate

Independent of the WSU work, Howe and He used Arabidopsis, a common lab plant, and tomato plants to determine how the JAZ proteins work. Their experiments showed that the jasmonate signal causes direct interaction between JAZ proteins and a second protein complex, SCFCOI1, that works to eliminate the JAZ protein so that the plant can mount a defense response.

Based on the research findings, there is strong evidence to suggest that Howe and He might have identified the SCFCOI1 protein complex as the receptor for jasmonate.

“We found that when jasmonate is present the COI1 and JAZ proteins bind together,” said He, an MSU professor of plant biology, plant pathology, and microbiology and molecular genetics. “This opens the way for the plant to turn on the necessary genetic or cellular response.”

As part of their research, Howe and He have proposed a model for how this interaction works.

“Now that we know what the active signals are and have identified the key regulatory proteins – the JAZ proteins – involved, the hope is to either genetically modify plants or develop compounds that mimic the jasmonate hormone,” Howe said. “The research may help scientists engineer plants for increased resistance to insects and pathogens.”

Researchers at both universities will continue to work on other critical aspects of this research.

“Understanding how the jasmonate system works will shed light on all the processes in which the hormone is involved, notably plant reproduction and defense,” said John Browse, head of the WSU Institute of Biological Chemistry research team.

“This study represents a significant advance in our understanding of a major plant hormone and how it works,” He said. “We are excited to be part of this collaborative effort and look forward to extending the understanding and application of this important work.”

The research was funded by the National Institutes of Health and the U.S. Department of Energy and supported by the Michigan Agricultural Experiment Station.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Gregg Howe | EurekAlert!
Further information:
http://www.msu.edu
http://www.nature.com/nature/journal/vaop/ncurrent/index.html

Further reports about: Howe JAZ MSU jasmonate

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>