Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MSU researchers JAZ (zed) about plant resistance discovery

20.07.2007
The mystery of how a major plant hormone works to defend plants against invaders has been revealed, thanks to collaborative research efforts by Michigan State University and Washington State University.

While scientists have known for years that a common plant hormone, jasmonate, plays a crucial role in plant development and function, the steps that convert the hormone’s signal into genetic and cellular action have remained elusive. MSU scientists Sheng Yang He and Gregg Howe were part of two back-to-back discoveries that solved the mystery, described in the July 18 online issue of the journal Nature.

Jasmonate is the last major plant hormone to have its signaling process revealed. Initial research by WSU researchers identified the family of proteins – dubbed JAZ proteins – that are critical to plants receiving and responding to the jasmonate signal.

“In a healthy environment, these JAZ proteins are doing their job – they’re blocking all the defenses and signals, because they are not needed,” said Howe, an MSU professor of biochemistry and molecular biology. “But when a plant becomes stressed by an insect or pathogen, the plant needs to respond very quickly if it’s going to be successful in warding off the attacker.”

... more about:
»Howe »JAZ »MSU »jasmonate

Independent of the WSU work, Howe and He used Arabidopsis, a common lab plant, and tomato plants to determine how the JAZ proteins work. Their experiments showed that the jasmonate signal causes direct interaction between JAZ proteins and a second protein complex, SCFCOI1, that works to eliminate the JAZ protein so that the plant can mount a defense response.

Based on the research findings, there is strong evidence to suggest that Howe and He might have identified the SCFCOI1 protein complex as the receptor for jasmonate.

“We found that when jasmonate is present the COI1 and JAZ proteins bind together,” said He, an MSU professor of plant biology, plant pathology, and microbiology and molecular genetics. “This opens the way for the plant to turn on the necessary genetic or cellular response.”

As part of their research, Howe and He have proposed a model for how this interaction works.

“Now that we know what the active signals are and have identified the key regulatory proteins – the JAZ proteins – involved, the hope is to either genetically modify plants or develop compounds that mimic the jasmonate hormone,” Howe said. “The research may help scientists engineer plants for increased resistance to insects and pathogens.”

Researchers at both universities will continue to work on other critical aspects of this research.

“Understanding how the jasmonate system works will shed light on all the processes in which the hormone is involved, notably plant reproduction and defense,” said John Browse, head of the WSU Institute of Biological Chemistry research team.

“This study represents a significant advance in our understanding of a major plant hormone and how it works,” He said. “We are excited to be part of this collaborative effort and look forward to extending the understanding and application of this important work.”

The research was funded by the National Institutes of Health and the U.S. Department of Energy and supported by the Michigan Agricultural Experiment Station.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Gregg Howe | EurekAlert!
Further information:
http://www.msu.edu
http://www.nature.com/nature/journal/vaop/ncurrent/index.html

Further reports about: Howe JAZ MSU jasmonate

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>