Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MSU researchers JAZ (zed) about plant resistance discovery

20.07.2007
The mystery of how a major plant hormone works to defend plants against invaders has been revealed, thanks to collaborative research efforts by Michigan State University and Washington State University.

While scientists have known for years that a common plant hormone, jasmonate, plays a crucial role in plant development and function, the steps that convert the hormone’s signal into genetic and cellular action have remained elusive. MSU scientists Sheng Yang He and Gregg Howe were part of two back-to-back discoveries that solved the mystery, described in the July 18 online issue of the journal Nature.

Jasmonate is the last major plant hormone to have its signaling process revealed. Initial research by WSU researchers identified the family of proteins – dubbed JAZ proteins – that are critical to plants receiving and responding to the jasmonate signal.

“In a healthy environment, these JAZ proteins are doing their job – they’re blocking all the defenses and signals, because they are not needed,” said Howe, an MSU professor of biochemistry and molecular biology. “But when a plant becomes stressed by an insect or pathogen, the plant needs to respond very quickly if it’s going to be successful in warding off the attacker.”

... more about:
»Howe »JAZ »MSU »jasmonate

Independent of the WSU work, Howe and He used Arabidopsis, a common lab plant, and tomato plants to determine how the JAZ proteins work. Their experiments showed that the jasmonate signal causes direct interaction between JAZ proteins and a second protein complex, SCFCOI1, that works to eliminate the JAZ protein so that the plant can mount a defense response.

Based on the research findings, there is strong evidence to suggest that Howe and He might have identified the SCFCOI1 protein complex as the receptor for jasmonate.

“We found that when jasmonate is present the COI1 and JAZ proteins bind together,” said He, an MSU professor of plant biology, plant pathology, and microbiology and molecular genetics. “This opens the way for the plant to turn on the necessary genetic or cellular response.”

As part of their research, Howe and He have proposed a model for how this interaction works.

“Now that we know what the active signals are and have identified the key regulatory proteins – the JAZ proteins – involved, the hope is to either genetically modify plants or develop compounds that mimic the jasmonate hormone,” Howe said. “The research may help scientists engineer plants for increased resistance to insects and pathogens.”

Researchers at both universities will continue to work on other critical aspects of this research.

“Understanding how the jasmonate system works will shed light on all the processes in which the hormone is involved, notably plant reproduction and defense,” said John Browse, head of the WSU Institute of Biological Chemistry research team.

“This study represents a significant advance in our understanding of a major plant hormone and how it works,” He said. “We are excited to be part of this collaborative effort and look forward to extending the understanding and application of this important work.”

The research was funded by the National Institutes of Health and the U.S. Department of Energy and supported by the Michigan Agricultural Experiment Station.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Gregg Howe | EurekAlert!
Further information:
http://www.msu.edu
http://www.nature.com/nature/journal/vaop/ncurrent/index.html

Further reports about: Howe JAZ MSU jasmonate

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>