Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In evolutionary arms race, a bacterium is found that outwits tomato plant's defenses

20.07.2007
An arms race is under way in the plant world. It is an evolutionary battle in which plants are trying to beef up their defenses against the innovative strategies of pathogens. The latest example of this war is a bacterium (Pseudomonas syringae) that infects tomatoes by injecting a special protein into the plant's cells to undermine the plant's defense system.

"Plant breeders often find that five or six years after their release, resistant plant varieties become susceptible because pathogens can evolve very quickly to overcome plant defenses," said Gregory Martin, Cornell professor of plant pathology, a scientist at the Boyce Thompson Institute for Plant Research (BTI) on the Cornell campus and the senior author of the research paper, published in the July 19 issue of the journal Nature. "However, every now and then, breeders develop a plant variety that stays resistant for 20 years or more."

Understanding why some varieties have more durable disease resistance is important to the development of more sustainable agricultural practices, he said.

The study by Cornell and BTI scientists describes how a single bacterial protein, AvrPtoB, which is injected by P. syringae into plant cells through a kind of molecular syringe, can overcome the plant's resistance. Normally, the plant's defense system looks out for such pathogens and, if detected, mounts an immune response to stave off disease. As part of this surveillance system, tomatoes carry a protein in their cells called Fen that helps detect P. syringae and trigger an immune response.

... more about:
»AvrPtoB »FEN »Pathogen »bacterium »plant' »syringae »tomato

But some strains of P. syringae have evolved the AvrPtoB protein that mimics a tomato enzyme known as an E3 ubiquitin ligase, which tags proteins to be destroyed. Once injected, AvrPtoB binds the Fen protein, and the plant's own system eliminates it, allowing the bacteria to avoid detection and cause disease.

"This paper explains how a pathogen can evolve to escape detection," said lead author Tracy Rosebrock, a graduate student in Cornell's Department of Plant Pathology and BTI. "The bacterium has one specific protein that it uses to turn off the plant's immunity."

The researchers found that the Fen gene is present in both cultivated tomatoes and many wild tomato species, leading them to believe that the gene is likely ancient in origin and that many members of the tomato family have used it to resist P. syringae infections over the years. Since the Fen protein still detects AvrPtoB-like proteins from some strains of P. syringae, prompting an effective immune response, the researchers believe new P. syringae strains have only recently evolved a version of AvrPtoB that includes an E3 ubiquitin ligase enzyme that interferes with the plant's surveillance.

"This paper provides molecular data that supports the evolutionary 'arms race' theory" that as pathogens develop new ways to spread and attack organisms, the organisms in turn create novel defenses, each in a continuous battle to outdo the other, said Rosebrock.

The research was funded by the National Institutes of Health, the National Science Foundation and the Triad Foundation, a private charitable trust.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

Further reports about: AvrPtoB FEN Pathogen bacterium plant' syringae tomato

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>