Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene identified for Crohn's disease in children

20.07.2007
Pediatrics researchers have identified a gene variant that raises a child’s risk of Crohn’s disease, a chronic and painful condition attributed to inflammation of the gastrointestinal tract.

The research reinforces previous results by German researchers, who found the same gene variant associated with the adult form of Crohn’s disease.

Researchers from The Children’s Hospital of Philadelphia and The University of Pennsylvania reported their results in a letter in the August issue of the journal Gut.

“Because Crohn’s disease is complex, with multiple genes interacting with each other and with environmental factors, it’s important to sort out specific genes and to replicate previous findings,” said the study’s first author, Robert N. Baldassano, M.D., director of the Center for Pediatric Inflammatory Bowel Disease at Children’s Hospital. “There are different types of Crohn’s disease, so classifying types by genetic profiles may help us select the most appropriate treatments for each patient.”

The study compared the genomes of 143 children with Crohn’s disease to genomes of 282 matched control subjects. The study team found that 64 percent of children with Crohn’s disease had a specific variant form of the gene ATG16L1, compared with 52 percent of the healthy children. The odds ratio for children with the gene variant was 1.62 compared to control children, meaning that those who have the variant were 62 percent more likely to have Crohn’s disease than children with the more common allele.

A separate test that analyzed trios (a Crohn’s patient and both parents) also found an association between the ATG16L1 gene variant and disease symptoms. This finding strengthened the results of the pediatric case-control study.

The genome-wide association study, which used highly automated analytic equipment to scan each patient’s DNA for more than half a million genetic markers, was performed at the Center for Applied Genomics at Children’s Hospital. The Center’s tools spell out a patient’s genotype—the specific pattern of variations among an individual’s 30,000 genes. Established in the summer of 2006, the center is taking on one of the largest genotyping projects in the world, and is the largest one dedicated to genetic analysis of childhood diseases.

“This study is among the first that our center has published on a gene associated with a complex childhood disease, but we have many projects under way,” said senior author Hakon Hakonarson, M.D., Ph.D., the director of the Center for Applied Genomics. “Our goal at the Center is to discover the major disease-causing variants and genes that influence complex pediatric diseases, thus providing a scientific foundation for translating those discoveries into successful treatments.” Earlier this month, Hakonarson collaborated with researchers in Montreal to identify a gene associated with insulin-dependent diabetes in children. Other projects at the Center are seeking genes associated with pediatric asthma, allergy, obesity, attention-deficit hyperactivity disorder, autism, hypertension, juvenile rheumatoid arthritis and the pediatric cancer neuroblastoma.

The gene implicated in the current research, ATG16L1, plays an important role in the autophagosome pathway, a sequence of biological events involved in processing bacteria within cells. While the mechanisms are not fully understood, said Baldassano, a mutation in the gene may weaken a cell’s ability to degrade cellular waste products, including bacteria. When unprocessed waste products pile up within the cell, they may stimulate the inflammatory response that characterizes Crohn’s disease.

Although much research remains to be done, he added, better understanding of the disease process may guide doctors to new and improved therapies. “If an excess of bacteria is the problem, we may find antibiotics effective in treating this type of Crohn’s disease. Other approaches may be to use immune-boosting drugs to blunt the inflammation, or determining whether particular foods interact with genetic susceptibilities to affect disease symptoms. Understanding gene influences gives us a more targeted way to look at disease physiology, and also may suggest targets for treatment.” Baldassano and Hakonarson said that they will continue to search for other gene variants associated with Crohn’s disease and the closely related bowel disorder ulcerative colitis.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

Further reports about: Crohn’s Pediatric Treatment gene variant variant

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>