Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene identified for Crohn's disease in children

20.07.2007
Pediatrics researchers have identified a gene variant that raises a child’s risk of Crohn’s disease, a chronic and painful condition attributed to inflammation of the gastrointestinal tract.

The research reinforces previous results by German researchers, who found the same gene variant associated with the adult form of Crohn’s disease.

Researchers from The Children’s Hospital of Philadelphia and The University of Pennsylvania reported their results in a letter in the August issue of the journal Gut.

“Because Crohn’s disease is complex, with multiple genes interacting with each other and with environmental factors, it’s important to sort out specific genes and to replicate previous findings,” said the study’s first author, Robert N. Baldassano, M.D., director of the Center for Pediatric Inflammatory Bowel Disease at Children’s Hospital. “There are different types of Crohn’s disease, so classifying types by genetic profiles may help us select the most appropriate treatments for each patient.”

The study compared the genomes of 143 children with Crohn’s disease to genomes of 282 matched control subjects. The study team found that 64 percent of children with Crohn’s disease had a specific variant form of the gene ATG16L1, compared with 52 percent of the healthy children. The odds ratio for children with the gene variant was 1.62 compared to control children, meaning that those who have the variant were 62 percent more likely to have Crohn’s disease than children with the more common allele.

A separate test that analyzed trios (a Crohn’s patient and both parents) also found an association between the ATG16L1 gene variant and disease symptoms. This finding strengthened the results of the pediatric case-control study.

The genome-wide association study, which used highly automated analytic equipment to scan each patient’s DNA for more than half a million genetic markers, was performed at the Center for Applied Genomics at Children’s Hospital. The Center’s tools spell out a patient’s genotype—the specific pattern of variations among an individual’s 30,000 genes. Established in the summer of 2006, the center is taking on one of the largest genotyping projects in the world, and is the largest one dedicated to genetic analysis of childhood diseases.

“This study is among the first that our center has published on a gene associated with a complex childhood disease, but we have many projects under way,” said senior author Hakon Hakonarson, M.D., Ph.D., the director of the Center for Applied Genomics. “Our goal at the Center is to discover the major disease-causing variants and genes that influence complex pediatric diseases, thus providing a scientific foundation for translating those discoveries into successful treatments.” Earlier this month, Hakonarson collaborated with researchers in Montreal to identify a gene associated with insulin-dependent diabetes in children. Other projects at the Center are seeking genes associated with pediatric asthma, allergy, obesity, attention-deficit hyperactivity disorder, autism, hypertension, juvenile rheumatoid arthritis and the pediatric cancer neuroblastoma.

The gene implicated in the current research, ATG16L1, plays an important role in the autophagosome pathway, a sequence of biological events involved in processing bacteria within cells. While the mechanisms are not fully understood, said Baldassano, a mutation in the gene may weaken a cell’s ability to degrade cellular waste products, including bacteria. When unprocessed waste products pile up within the cell, they may stimulate the inflammatory response that characterizes Crohn’s disease.

Although much research remains to be done, he added, better understanding of the disease process may guide doctors to new and improved therapies. “If an excess of bacteria is the problem, we may find antibiotics effective in treating this type of Crohn’s disease. Other approaches may be to use immune-boosting drugs to blunt the inflammation, or determining whether particular foods interact with genetic susceptibilities to affect disease symptoms. Understanding gene influences gives us a more targeted way to look at disease physiology, and also may suggest targets for treatment.” Baldassano and Hakonarson said that they will continue to search for other gene variants associated with Crohn’s disease and the closely related bowel disorder ulcerative colitis.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

Further reports about: Crohn’s Pediatric Treatment gene variant variant

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>