Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme eliminated by cancer cells holds promise for cancer treatment

20.07.2007
An enzyme that cancer cells eliminate, apparently so they can keep proliferating, may hold clues to more targeted, effective cancer treatment, scientists say.

In a high-stakes tit for tat, protein kinase G enables healthy cells to stay on task to proliferate, differentiate then provide a useful function. Cancer somehow reduces or eliminates PKG and cells get stuck proliferating.

"The bottom line is, in normal tissue, you can see PKG being expressed; but tumors or cell lines that correlate with those tissues don't have nearly as much," says Dr. Darren Browning, cancer researcher at the Medical College of Georgia.

Cell lines used for all types of research appear to support his hypothesis. Many are actually cancer cells because of their proclivity to keep producing; Dr. Browning and others have shown PKG is lost in these cells. "You split them once or twice and they kind of lose their character," he says.

The same appears true for tumors in people, says Dr. Browning, whose lab has found dramatic differences in PKG levels in tumors compared to even nearby, healthy tissue removed in surgery to ensure a cancer-free margin.

The findings made him wonder if the change in PKG level was just an artifact or was critical to cancer survival. "A lot of proteins are lost by cancer cells, so we asked, 'What happens if we put PKG back into the cancer cells?'"

He took metastatic colon cancer cells, created a system for reintroducing PKG, then put the cells into mice without an immune system. He admits he was disappointed that the PKG-enhanced cells grew but became very interested in how they grew.

Cancer cells without PKG created hard, solid tumors that spread. PKG-enhanced cells created a soft, non-invasive tumor that literally fell apart on contact and seemed to grow in little islands. After consultation with pathologists and others, he realized the PKG-enhanced cells were congregating around the few blood vessels. "We know that cancer cells, particularly colon cancer cells, are very aggressive at bringing blood vessels into the tumor," he says. Cells poor at recruiting blood vessels don't grow well, which seems to be the case for PKG-enhanced colon cancer cells.

Now he wants to know how PKG nullifies aggressive metastatic cancer cells. "We think PKG inhibits cancer by getting rid of a cancer-promoting gene called beta-catenin, which slows growth and blocks the tumor's ability to recruit blood vessels that are needed to grow bigger," says Dr. Browning, who recently received a $720,000 American Cancer Society grant to pursue his hypothesis. His proposal was ranked number one by the ACS Cell Structure and Metastasis Study Section.

He's already shown that PKG can reduce vascular endothelial growth factor, or VEGF; anti-VEGF drugs are the focus of numerous anti-cancer trials underway in the country because of VEGF's critical role in development of new blood vessels. "Maybe by activating PKG or increasing PKG expression in tumors, we are going to reduce the amount of VEGF they produce," he says. "We don't know whether PKG has a role in going from normal tissue to the initiation of a tumor, but we think it's important to the tumor both in terms of angiogenesis and blocking metastasis." He points to one of his studies in which colon cancer's spread to the lungs – a common path for metastatic colon cancer – was completely blocked by PKG expression.

A big part of the magic of PKG may be its impact on a gene called beta-catenin, which enables many stem cells, including those in the skin, bone marrow and colon, to proliferate throughout life. Little pits called crypts in the wall of the colon contain Wnt hormone which stimulate nearby stem cells, causing an increase in beta-catenin. The net effect is the colon makes new cells to replace cells lost to the ongoing grind of absorbing water and minerals from food and forming and eliminating waste.

As cells start moving out of the crypt, away from the Wnt hormone, beta-catenin levels go down so cells should stop dividing and start maturing. Essentially all colon cancers have an aberration in this beta-catenin system that prevents normal degradation and allows cell to keep proliferating.

"In the normal cells that line the colon, you don't see very much beta-catenin. We think PKG in these cells keeps it that way to keep the cells from continuing to proliferate and spread," says Dr. Browning, who has already shown that in the test tube at least, adding PKG lowers beta-catenin levels. Interestingly, beta-catenin also is known to regulate VEGF expression in colon cancer.

"In a nutshell, the first and most important genetic lesions leading to colon cancer cause increased beta-catenin levels," says Dr. Browning. "We found PKG can knock down beta-catenin levels by up to 80 percent in some colon cancer cells and we think that is part of the mechanism by which PKG is able to block tumor angiogenesis and metastasis."

He's excited by the implications and is involved in extensive collaborations to understand how PKG regulates beta-catenin and how it might be used in cancer therapies.

Evidence of PKG's effectiveness in fighting colon cancer in humans may already be available. Colon and rectal cancer is the third most common cancer in men and women in the United States but it's rare in developing countries where residents eat less processed food and ingest more bacteria. Some of these bacteria make a protein, STa, which appears to prevent and even kill colon cancer cells. Dr. Browning believes that PKG is responsible for STa's anti-cancer effects.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

Further reports about: Beta-Catenin Browning PKG PKG-enhanced Vessels colon cancer don'

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>