Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coming Soon: Protein Synthesis Without Amino Acids?

19.07.2007
Polypeptide synthesis done differently: cobalt-catalyzed copolymerization of imines and CO

Usually, the synthesis of short protein chains (polypeptides) begins with the production of their components, the amino acids. But it can be done differently: In the journal Angewandte Chemie, Chinese researchers report a considerably more convenient method that is similar to olefin polymerization, which is used for the mass production of plastics such as polyethylene. The advantage of this reaction is that it uses inexpensive starting materials and would be ideal for industrial production.

Whether in the body or the factory, the backbone of polypeptide chains is usually formed by the linking of an amino group with the acid group of individual amino acids. Like pearls on a string, the amino acids then line up. However, to get to such a structure, it isn’t absolutely necessary to start from amino acids. Imines, compounds with a carbon-nitrogen double bond, could be an ideal starting material—if it were possible to link them together in an alternating fashion with a carbon monoxide molecule (CO), like a pearl necklace made of two different alternating types of pearl. This long-envisioned process is modeled after the plastic production process known as Ziegler-Natta polymerization, which requires special metal catalysts. The heart of this process is a step called insertion, in which the next “pearl”, or monomer, squeezes itself in between the metal atom and the growing chain.

Until now, attempts to use this type of copolymerization for peptide synthesis have failed because of the lack of a suitable, effective, and continuously operating catalyst. Researchers led by Huailin Sun at Nankai University in China have now found a catalyst to do the job: a simple cobalt complex. The team was thus able to use this technique to synthesize polypeptides that have previously not been accessible by other means.

... more about:
»Polypeptide »acid »amino acid

As a next step, the Chinese researchers want to include not just one, but a variety of imines into the same chain.

Author: Huailin Sun, Nankai University, Tianjin (China), mailto:sunhl@nankai.edu.cn

Title: Metal-Catalyzed Copolymerization of Imines and CO: A Non-Amino Acid Route to Polypeptides

Angewandte Chemie International Edition 2007, 46, No. 32, doi: 10.1002/anie.200700646

Huailin Sun | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

Further reports about: Polypeptide acid amino acid

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>