Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research proves single origin of humans in Africa

19.07.2007
New research published in the journal Nature (19 July) has proved the single origin of humans theory by combining studies of global genetic variations in humans with skull measurements across the world. The research, at the University of Cambridge and funded by the Biotechnology and Biological Sciences Research Council (BBSRC), represents a final blow for supporters of a multiple origins of humans theory.

Competing theories on the origins of anatomically modern humans claim that either humans originated from a single point in Africa and migrated across the world, or different populations independently evolved from homo erectus to home sapiens in different areas.

The Cambridge researchers studied genetic diversity of human populations around the world and measurements of over 6,000 skulls from across the globe in academic collections. Their research knocks down one of the last arguments in favour of multiple origins. The new findings show that a loss in genetic diversity the further a population is from Africa is mirrored by a loss in variation in physical attributes.

Lead researcher, Dr Andrea Manica from the University's Department of Zoology, explained: "The origin of anatomically modern humans has been the focus of much heated debate. Our genetic research shows the further modern humans have migrated from Africa the more genetic diversity has been lost within a population.

"However, some have used skull data to argue that modern humans originated in multiple spots around the world. We have combined our genetic data with new measurements of a large sample of skulls to show definitively that modern humans originated from a single area in Sub-saharan Africa."

The research team found that genetic diversity decreased in populations the further away from Africa they were - a result of 'bottlenecks' or events that temporarily reduced populations during human migration. They then studied an exceptionally large sample of human skulls. Taking a set of measurements across all the skulls the team showed that not only was variation highest amongst the sample from south eastern Africa but that it did decrease at the same rate as the genetic data the further the skull was away from Africa.

To ensure the validity of their single origin evidence the researchers attempted to use their data to find non-African origins for modern humans. Research Dr Francois Balloux explains: "To test the alternative theory for the origin of modern humans we tried to find an additional, non-African origin. We found this just did not work. Our findings show that humans originated in a single area in Sub-Saharan Africa."

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: diversity genetic diversity measurements originated skull

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>