Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research proves single origin of humans in Africa

19.07.2007
New research published in the journal Nature (19 July) has proved the single origin of humans theory by combining studies of global genetic variations in humans with skull measurements across the world. The research, at the University of Cambridge and funded by the Biotechnology and Biological Sciences Research Council (BBSRC), represents a final blow for supporters of a multiple origins of humans theory.

Competing theories on the origins of anatomically modern humans claim that either humans originated from a single point in Africa and migrated across the world, or different populations independently evolved from homo erectus to home sapiens in different areas.

The Cambridge researchers studied genetic diversity of human populations around the world and measurements of over 6,000 skulls from across the globe in academic collections. Their research knocks down one of the last arguments in favour of multiple origins. The new findings show that a loss in genetic diversity the further a population is from Africa is mirrored by a loss in variation in physical attributes.

Lead researcher, Dr Andrea Manica from the University's Department of Zoology, explained: "The origin of anatomically modern humans has been the focus of much heated debate. Our genetic research shows the further modern humans have migrated from Africa the more genetic diversity has been lost within a population.

"However, some have used skull data to argue that modern humans originated in multiple spots around the world. We have combined our genetic data with new measurements of a large sample of skulls to show definitively that modern humans originated from a single area in Sub-saharan Africa."

The research team found that genetic diversity decreased in populations the further away from Africa they were - a result of 'bottlenecks' or events that temporarily reduced populations during human migration. They then studied an exceptionally large sample of human skulls. Taking a set of measurements across all the skulls the team showed that not only was variation highest amongst the sample from south eastern Africa but that it did decrease at the same rate as the genetic data the further the skull was away from Africa.

To ensure the validity of their single origin evidence the researchers attempted to use their data to find non-African origins for modern humans. Research Dr Francois Balloux explains: "To test the alternative theory for the origin of modern humans we tried to find an additional, non-African origin. We found this just did not work. Our findings show that humans originated in a single area in Sub-Saharan Africa."

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: diversity genetic diversity measurements originated skull

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>