Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune system 'escape hatch' gives cancer cells traction

18.07.2007
Discovery explains why anticancer vaccines mostly fail

Scientists at Johns Hopkins and elsewhere say they have mapped out an escape route that cancers use to evade the body’s immune system, allowing the disease to spread unchecked.

In a report published in the July 1 issue of the journal Nature Medicine, the Hopkins team, along with researchers from Florida and Nebraska, describe how myeloid-derived suppressor cells (MDSCs), which normally keep the immune system in check and prevent it from attacking otherwise healthy tissue, can suppress the anti-tumor response to cancer.

These suppressor cells block other immune system cells, CD8 “killer” T cells, from binding with proteins that identify the foreign antigens on the surface of unhealthy cancer cells, marking them for destruction, the team reports.

... more about:
»MDSC »T cells »T-cell »Vaccine »escape »tolerance

The good news, they say, is that their experiments also suggest that the chain reactions in T-cell tolerance are reversible, raising the possibility of vaccine and drug therapies that break through the blocked immune system.

Previous research had confirmed that MDSCs, produced in the bone marrow, were attracted to tumors, but until now, scientists had not identified exactly how the cells inhibit the immune system’s ability to mount an attack.

By explaining some of the precise biological workings of MDSCs in cancer the team’s findings suggest why experimental cancer vaccines have to date been plagued by T-cell tolerance, a weakened rather than strengthened immune response, says Jonathan Schneck, M.D., Ph.D., one of the study’s authors.

“Our findings also open up a new door in drug and vaccine development that we never knew existed and provide another opportunity for drug development into autoimmune diseases, where the immune system is in overdrive and needs to be slowed down,” says Schneck, a professor of medicine, pathology and oncology at The Johns Hopkins University School of Medicine and its Kimmel Cancer Center.

The team’s latest report built on research initially conducted at the University of South Florida, where researchers analyzed blood samples and lymph tissue from healthy mice injected with MDSCs and found that T-cell levels remained the same, indicating that MDSCs did not destroy the immune response but apparently altered how the T cells behaved.

Using chemical tests in which individual tumor cells can be tagged with a fluorescent dye that allows them to glow when they are not bound to T cells, Florida researchers measured the immune response in mice to various foreign proteins, with and without injections of MDSCs. They found an 80 percent suppression of the immune response in the presence of MDSCs, confirming that the suppressor cells were inactivating the T cells.

The Florida team then turned to Schneck, who in 1993 developed several novel proteins to test how various antigens, such as those on cancer cells, specifically latch on to T cells.

Researchers then began experiments to determine if the MDSC T-cell interference was simply genetic or had some biochemical explanation, testing a half-dozen major reactions known to occur during infection to see if any set path was particularly active during interference.

In tissue tests from tumor-filled mice bred to lack a biochemical reaction, the scientists found that one specific pathway, the reactive-oxygen species, or ROS pathway, stood out, because when inactivated, T-cell tolerance did not develop. Researchers were surprised when subsequent tests showed that ROS actually modified the T cells, altering their structure so they could no longer bind to tumor-cell antigens.

When a known byproduct of ROS, the chemical peroxynitriate, was neutralized, T-cell tolerance failed to develop in test tube studies, pinning down peroxynitrate as the culprit prohibiting immune cell binding to and marking of “foreign” tumor cells.

“Peroxynitrate activity is the escape hatch, and now that we have identified it, we can try to cut it off before T-cell tolerance develops, or you can reverse it,” says Schneck.

Plans are underway to investigate the binding receptors of MDCSs and different anticancer drugs for their ability to lower levels of MDSCs and to explore the role of MDSCs in suppressing the immune response to stress, bacterial and viral infections, organ transplantation and autoimmune diseases. Their goal, researchers say, is to find some means of accelerating or slowing down T-cell activity gone awry.

David March | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: MDSC T cells T-cell Vaccine escape tolerance

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>