Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune system 'escape hatch' gives cancer cells traction

18.07.2007
Discovery explains why anticancer vaccines mostly fail

Scientists at Johns Hopkins and elsewhere say they have mapped out an escape route that cancers use to evade the body’s immune system, allowing the disease to spread unchecked.

In a report published in the July 1 issue of the journal Nature Medicine, the Hopkins team, along with researchers from Florida and Nebraska, describe how myeloid-derived suppressor cells (MDSCs), which normally keep the immune system in check and prevent it from attacking otherwise healthy tissue, can suppress the anti-tumor response to cancer.

These suppressor cells block other immune system cells, CD8 “killer” T cells, from binding with proteins that identify the foreign antigens on the surface of unhealthy cancer cells, marking them for destruction, the team reports.

... more about:
»MDSC »T cells »T-cell »Vaccine »escape »tolerance

The good news, they say, is that their experiments also suggest that the chain reactions in T-cell tolerance are reversible, raising the possibility of vaccine and drug therapies that break through the blocked immune system.

Previous research had confirmed that MDSCs, produced in the bone marrow, were attracted to tumors, but until now, scientists had not identified exactly how the cells inhibit the immune system’s ability to mount an attack.

By explaining some of the precise biological workings of MDSCs in cancer the team’s findings suggest why experimental cancer vaccines have to date been plagued by T-cell tolerance, a weakened rather than strengthened immune response, says Jonathan Schneck, M.D., Ph.D., one of the study’s authors.

“Our findings also open up a new door in drug and vaccine development that we never knew existed and provide another opportunity for drug development into autoimmune diseases, where the immune system is in overdrive and needs to be slowed down,” says Schneck, a professor of medicine, pathology and oncology at The Johns Hopkins University School of Medicine and its Kimmel Cancer Center.

The team’s latest report built on research initially conducted at the University of South Florida, where researchers analyzed blood samples and lymph tissue from healthy mice injected with MDSCs and found that T-cell levels remained the same, indicating that MDSCs did not destroy the immune response but apparently altered how the T cells behaved.

Using chemical tests in which individual tumor cells can be tagged with a fluorescent dye that allows them to glow when they are not bound to T cells, Florida researchers measured the immune response in mice to various foreign proteins, with and without injections of MDSCs. They found an 80 percent suppression of the immune response in the presence of MDSCs, confirming that the suppressor cells were inactivating the T cells.

The Florida team then turned to Schneck, who in 1993 developed several novel proteins to test how various antigens, such as those on cancer cells, specifically latch on to T cells.

Researchers then began experiments to determine if the MDSC T-cell interference was simply genetic or had some biochemical explanation, testing a half-dozen major reactions known to occur during infection to see if any set path was particularly active during interference.

In tissue tests from tumor-filled mice bred to lack a biochemical reaction, the scientists found that one specific pathway, the reactive-oxygen species, or ROS pathway, stood out, because when inactivated, T-cell tolerance did not develop. Researchers were surprised when subsequent tests showed that ROS actually modified the T cells, altering their structure so they could no longer bind to tumor-cell antigens.

When a known byproduct of ROS, the chemical peroxynitriate, was neutralized, T-cell tolerance failed to develop in test tube studies, pinning down peroxynitrate as the culprit prohibiting immune cell binding to and marking of “foreign” tumor cells.

“Peroxynitrate activity is the escape hatch, and now that we have identified it, we can try to cut it off before T-cell tolerance develops, or you can reverse it,” says Schneck.

Plans are underway to investigate the binding receptors of MDCSs and different anticancer drugs for their ability to lower levels of MDSCs and to explore the role of MDSCs in suppressing the immune response to stress, bacterial and viral infections, organ transplantation and autoimmune diseases. Their goal, researchers say, is to find some means of accelerating or slowing down T-cell activity gone awry.

David March | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: MDSC T cells T-cell Vaccine escape tolerance

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>