Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What determines the speed at which birds fly?

17.07.2007
Aerodynamic scaling rules that explain how flight varies according to weight and wing loading have been used to compare general speeds of a wide range of flyers, from the smallest insects to the largest aircraft.

In a paper published this week in the open access journal PLoS Biology, Thomas Alerstam, Mikael Rosen, and colleagues from the University of Lund in Sweden analyze the flight speeds of 138 bird species and overturn the general assumption that maximum flight speed of a species is solely determined by such rules. Flight speed doesn’t just depend on the size of the bird (mass and wing loading), but also reflects functional constraints and the evolutionary lineage of the species in question.

The authors argue that only empirical measurements of flight speeds enable you to evaluate how general such aerodynamic rules really are. They used tracking radar measurements of the cruising speeds of migrating birds (collected by themselves and others) to do the analysis and provide the comprehensive dataset with the paper (e.g. this contains the flight speed of approximately one-third of all European bird species). Their analysis reveals that the difference between the speed of small and large birds is not as great as expected; they suggest that this surprising result is likely to be the result of disadvantages associated with very slow speeds among smaller birds and with very fast speeds for larger birds. They also show that the evolutionary history of the species helps explain much of the variation in flight speed: species of the same group tend to fly at similar characteristic speeds. For example, birds of prey and herons had slow flight speeds, on average, given their mass and wing loading, whereas the average speed for songbirds and shorebirds was faster than would be predicted.

This study suggests that there are different functional adaptations affecting flight differently among different types of bird, and that there exists a diversity of cruising flight characteristics among birds that remain to be explored and understood.

Natalie Bouaravong | EurekAlert!
Further information:
http://www.plosbiology.org

Further reports about: Flight Speed loading species

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>