Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The UAB heads a European research project on proteases and pathological processes

17.07.2007
A research group of the UAB Institute of Biotechnology and Biomedicine and the UAB Department of Biochemistry and Molecular Biology, directed by Francesc Xavier Avilés, is the coordinator of a European project aimed at studying proteases with fluorescent molecules that allow their monitoring in healthy and pathological situations.

Entitled "Chemical Genomics by Activity Monitoring of Proteases" (CAMP), the project was designed with the final objective of developing drugs to control proteases in inflammations, cardiovascular diseases, cancer and neurodegeneration.

The project has already begun and is being carried out by a consortium of research groups from different universities, small and medium sized enterprises, and a large pharmaceutical company. Although under UAB coordination, six other collaborating centres from Germany, Switzerland, Slovenia, United Kingdom and Denmark also work on the project. CAMP forms part of the European Union's Specific Targeted Catering Projects (STREP) and has a duration of three years.

Proteases are enzymes, or proteins that act as catalysts for other proteins when regulating many of the biological processes involved in blood coagulation, food processing, extracellular matrix renewing, etc. Without the regulation of protease activity, numerous pathologies can appear, such as cardiovascular, neuron and autoimmune diseases, inflammations, osteoporosis, arthritis and cancer.

... more about:
»UAB »cAMP »pathological »processes

The main objective of the CAMP project is to obtain information on the structure, activity and evolution of the proteases and its inhibitors (molecules that alter their functions) by monitoring their activities in situ and in vivo.

This will then help discover where the proteases that the drugs need to act on can be found. With this aim, the researchers have developed substrates with fluorescent molecules that will be attached to the proteases. This will allow them to monitor the proteases in tissue culture and live animals. The information obtained will then enable scientists to develop specific protease inhibitors.

Octavi López Coronado | alfa
Further information:
http://bioinf.uab.es/camp/
http://www.institutoroche.es/genomica.php?op=biotecnologia

Further reports about: UAB cAMP pathological processes

More articles from Life Sciences:

nachricht New technology offers fast peptide synthesis
28.02.2017 | Massachusetts Institute of Technology

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>