Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bak protein sets stressed cells on suicide path

When a cell is seriously stressed, say by a heart attack, stroke or cancer, a protein called Bak just may set it up for suicide, researchers have found.

In a deadly double whammy, Bak helps chop the finger-like filament shape of the cell's powerhouse, or mitochondrion, into vulnerable little spheres. Another protein Bax then pokes countless holes in those spheres, spilling their pro-death contents into the cell.

"We found out Bak has a distinct function in regulation of the mitochondrial morphology," says Dr. Zheng Dong, cell biologist at the Medical College of Georgia and the Veterans Affairs Medical Center in Augusta and corresponding author on a paper published this week in Proceedings of the National Academy of Sciences. "Bax, on the other hand, is not involved in morphological regulation but needs to be there to puncture holes."

"One has to break up, kind of soften, the mitochondria for injury, and the other one actually punches the holes to kill it," says Craig Brooks, MCG graduate student and the paper's first author.

Bak and Bax have similar structures and scientists have long suspected they play major, similar roles in programmed cell death, or apoptosis. "These two proteins are very important for mitochondrial injury and subsequent apoptosis," says Dr. Dong.

To stress cells, they blocked oxygen supplies and used the common chemotherapeutic agent cisplatin, then documented that filamentous mitochondria became fragmented very early and quickly in apoptosis. Ironically they also found the deadly fragmentation results from Bak's interaction with mitochondria-shaping proteins called mitofusins, which help mitochondria keep their filamentous shape in non-stressed cells. Dr. Dong suspects Bak may also play a role in mitofusin regulation in normal, non-stressful conditions.

In fact, the researchers suspect Bak, Bax and the contents they spill into the cell all have roles in keeping a cell functioning until a stressor kicks in.

"They probably are both kept in check normally in the cell by other proteins, and when something happens that overwhelms the cell, it activates Bak and Bax to start cell death," says Mr. Brooks. "Some of the same proteins, cytochrome c is the big one, are needed for daily mitochondrial function like making energy, but if they are released from the mitochondria, they activate a cell killing or apoptotic pathway," says Dr. Dong, referencing the contents that spill from punctured mitochondria.

Looking at kidney cells and neurons in a Bak deficient mouse, they also showed that Bak and Bax need each other to successfully spawn cell suicide. "If you have Bak but not Bax, the mitochondria still fragment but they don't die; if you have Bax but not Bak, you still have punctures in the mitochondria but with low efficiency," says Mr. Brooks.

Now they want to know exactly how Bak interacts with mitofusins, how the interaction is regulated and how it affects mitochondrial morphology, physiology and pathology. Their long-term goal for better understanding the cell suicide mechanism is developing drugs to block it in the case of a stroke, for example, or induce it to kill cancer.

Dr. Dong recently received a $1.1 million, four-year renewal grant from the National Institute of Diabetes & Digestive & Kidney Diseases to further study the structural changes of mitochondria during apoptosis and normal physiological conditions.

Toni Baker | EurekAlert!
Further information:

Further reports about: Bak Dong apoptosis mitochondria mitochondrial mitofusin

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>