Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bak protein sets stressed cells on suicide path

16.07.2007
When a cell is seriously stressed, say by a heart attack, stroke or cancer, a protein called Bak just may set it up for suicide, researchers have found.

In a deadly double whammy, Bak helps chop the finger-like filament shape of the cell's powerhouse, or mitochondrion, into vulnerable little spheres. Another protein Bax then pokes countless holes in those spheres, spilling their pro-death contents into the cell.

"We found out Bak has a distinct function in regulation of the mitochondrial morphology," says Dr. Zheng Dong, cell biologist at the Medical College of Georgia and the Veterans Affairs Medical Center in Augusta and corresponding author on a paper published this week in Proceedings of the National Academy of Sciences. "Bax, on the other hand, is not involved in morphological regulation but needs to be there to puncture holes."

"One has to break up, kind of soften, the mitochondria for injury, and the other one actually punches the holes to kill it," says Craig Brooks, MCG graduate student and the paper's first author.

Bak and Bax have similar structures and scientists have long suspected they play major, similar roles in programmed cell death, or apoptosis. "These two proteins are very important for mitochondrial injury and subsequent apoptosis," says Dr. Dong.

To stress cells, they blocked oxygen supplies and used the common chemotherapeutic agent cisplatin, then documented that filamentous mitochondria became fragmented very early and quickly in apoptosis. Ironically they also found the deadly fragmentation results from Bak's interaction with mitochondria-shaping proteins called mitofusins, which help mitochondria keep their filamentous shape in non-stressed cells. Dr. Dong suspects Bak may also play a role in mitofusin regulation in normal, non-stressful conditions.

In fact, the researchers suspect Bak, Bax and the contents they spill into the cell all have roles in keeping a cell functioning until a stressor kicks in.

"They probably are both kept in check normally in the cell by other proteins, and when something happens that overwhelms the cell, it activates Bak and Bax to start cell death," says Mr. Brooks. "Some of the same proteins, cytochrome c is the big one, are needed for daily mitochondrial function like making energy, but if they are released from the mitochondria, they activate a cell killing or apoptotic pathway," says Dr. Dong, referencing the contents that spill from punctured mitochondria.

Looking at kidney cells and neurons in a Bak deficient mouse, they also showed that Bak and Bax need each other to successfully spawn cell suicide. "If you have Bak but not Bax, the mitochondria still fragment but they don't die; if you have Bax but not Bak, you still have punctures in the mitochondria but with low efficiency," says Mr. Brooks.

Now they want to know exactly how Bak interacts with mitofusins, how the interaction is regulated and how it affects mitochondrial morphology, physiology and pathology. Their long-term goal for better understanding the cell suicide mechanism is developing drugs to block it in the case of a stroke, for example, or induce it to kill cancer.

Dr. Dong recently received a $1.1 million, four-year renewal grant from the National Institute of Diabetes & Digestive & Kidney Diseases to further study the structural changes of mitochondria during apoptosis and normal physiological conditions.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

Further reports about: Bak Dong apoptosis mitochondria mitochondrial mitofusin

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>