One man's junk may be a genomic treasure

Genes, which make up about four percent of the genome, encode for proteins, “the building blocks of life.” An international collaboration of scientists led by Michael G. Rosenfeld, M.D., Howard Hughes Medical Investigator and UCSD professor of medicine, found that some of the remaining 96 percent of genomic material might be important in the formation of boundaries that help properly organize these building blocks. Their work will be published in the July 13 issue of the journal Science.

“Some of the ‘junk’ DNA might be considered ‘punctuation marks’ – commas and periods that help make sense of the coding portion of the genome,” said first author Victoria Lunyak, Ph.D., assistant research scientist at UCSD.

In mice, as in humans, only about 4 percent of the genome encodes for protein function; the remainder, or “junk” DNA, represents repetitive and non-coding sequences. The research team studied a repeated genomic sequence called SINE B2, which is located on the growth hormone gene locus, the gene related to the aging process and longevity. The scientists were surprised to find that SINE B2 sequence is critical to formation of the functional domain boundaries for this locus.

Functional domains are stretches of DNA within the genome that contain all the regulatory signals and other information necessary to activate or repress a particular gene. Each domain is an entity unto itself that is defined, or bracketed, by a boundary, much as words in a sentence are bracketed by punctuation marks. The researchers’ data suggest that repeated genomic sequences might be a widely used strategy used in mammals to organize functional domains.

“Without boundary elements, the coding portion of the genome is like a long, run-on sequence of words without punctuation,” said Rosenfeld.

Decoding the information written in “junk” DNA could open new areas of medical research, particularly in the area of gene therapy. Scientists may find that transferring encoding genes into a patient, without also transferring the surrounding genomic sequences which give structure or meaning to these genes, would render gene therapy ineffective.

Media Contact

Debra Kain EurekAlert!

More Information:

http://www.ucsd.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Making diamonds at ambient pressure

Scientists develop novel liquid metal alloy system to synthesize diamond under moderate conditions. Did you know that 99% of synthetic diamonds are currently produced using high-pressure and high-temperature (HPHT) methods?[2]…

Eruption of mega-magnetic star lights up nearby galaxy

Thanks to ESA satellites, an international team including UNIGE researchers has detected a giant eruption coming from a magnetar, an extremely magnetic neutron star. While ESA’s satellite INTEGRAL was observing…

Partners & Sponsors