Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


RNA Interference – Decision-Making Processes on a Molecular Level

"How does RNAi work?" Researchers across the world have been trying to answer this question for a number of years. Science has now come closer to finding the answer thanks to a research group headed by Prof. Renée Schroeder (MFPL) and Dr. Javier Martinez (IMBA) based at the Campus Vienna Biocenter. The group's results are being published today in the internationally renowned scientific journal CELL and underline the importance of Austrian RNA research, which is also supported by the Austrian Science Fund FWF.

RNA interference (RNAi) is a natural cellular defence and regulation mechanism which works by eliminating unwanted RNA molecules. Its potential for use in therapy was officially recognised last year with the presentation of the Nobel Prize in Physiology or Medicine. Indeed, the first treatments to be based on this mechanism are currently undergoing clinical testing.

Nevertheless, the details of this process still require a great deal of further research and hence, offer potential for optimizing medical treatments based on it.


... more about:
»Ameres »Biocenter »RISC »RNA »RNA interference

It is precisely this potential that a group at the Campus Vienna Biocenter recently tapped in order to clarify key details surrounding the efficiency of RNA interference. Lead scientist Dr. Stefan L. Ameres from the Max F.

Perutz Laboratories (MFPL), Department for Biochemistry at the University of Vienna, explains – "A key stage of RNA interference is the binding of the RNA that is to be cleaved by RISC, the RNA-induced silencing complex.

Already a lot is known about the subsequent destruction of the target RNA by RISC, but we have only little insight into the initial determination as to which RNAs are bound and how exactly this happens. Working with the Institute for Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), we have succeeded in making considerable progress towards clarifying this process."

The team initially focussed on characterising the influence of the RNA structure. Variations of an RNA target molecule were created where the RISC binding site became increasingly difficult to access due to structural differences. Dr. Ameres comments on the findings from the experiment: "The results were very clear indeed. The less accessible the binding site, the less efficient the RISC-induced elimination of the target RNA. Based on this data, we concluded that RISC does not possess the means to change the structure of RNA molecules – an important finding towards the effective application of RNAi."

Another result was equally important to the understanding of RNA interference. The strength of the interaction between target RNA and RISC must exceed a certain threshold in order to trigger initiation of the subsequent RNA elimination process. This result clearly indicates that RISC binds RNA in a more or less random process and that it is the strength of this bond that determines the subsequent fate of the RNA. "One way of looking at this is that, while binding its target RNA, RISC has to carry out

a check to ensure that it is only certain RNAs that are destroyed," explains Dr. Ameres.


The publication of these results in the journal CELL highlights not just the quality of RNA research at the Max F. Perutz Laboratories (a joint establishment of the University of Vienna and the Medical University of Vienna), but also the high standard of training provided for young scientists in dedicated Ph.D. programs. The publication of these results is also the high point of Dr. Ameres' Ph.D. training, which he has now completed in just this type of program. In fact, a special "RNA Biology" Ph.D. program was established at the Campus Vienna Biocenter in June 2007 to ensure that RNA research there retains its leading position in the long term.

The work of molecular biologist Prof. Renée Schroeder also contributed to this achievement. She supported the work of Dr. Ameres using the prize money from the "Wittgenstein Award" presented to her by the FWF in 2003, thereby making an important financial contribution to the continuation of RNA research at the Campus Vienna Biocenter.

Till C. Jelitto | alfa
Further information:

Further reports about: Ameres Biocenter RISC RNA RNA interference

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>