Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA Interference – Decision-Making Processes on a Molecular Level

13.07.2007
"How does RNAi work?" Researchers across the world have been trying to answer this question for a number of years. Science has now come closer to finding the answer thanks to a research group headed by Prof. Renée Schroeder (MFPL) and Dr. Javier Martinez (IMBA) based at the Campus Vienna Biocenter. The group's results are being published today in the internationally renowned scientific journal CELL and underline the importance of Austrian RNA research, which is also supported by the Austrian Science Fund FWF.

RNA interference (RNAi) is a natural cellular defence and regulation mechanism which works by eliminating unwanted RNA molecules. Its potential for use in therapy was officially recognised last year with the presentation of the Nobel Prize in Physiology or Medicine. Indeed, the first treatments to be based on this mechanism are currently undergoing clinical testing.

Nevertheless, the details of this process still require a great deal of further research and hence, offer potential for optimizing medical treatments based on it.

NO RISC. NO FUN.

... more about:
»Ameres »Biocenter »RISC »RNA »RNA interference

It is precisely this potential that a group at the Campus Vienna Biocenter recently tapped in order to clarify key details surrounding the efficiency of RNA interference. Lead scientist Dr. Stefan L. Ameres from the Max F.

Perutz Laboratories (MFPL), Department for Biochemistry at the University of Vienna, explains – "A key stage of RNA interference is the binding of the RNA that is to be cleaved by RISC, the RNA-induced silencing complex.

Already a lot is known about the subsequent destruction of the target RNA by RISC, but we have only little insight into the initial determination as to which RNAs are bound and how exactly this happens. Working with the Institute for Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), we have succeeded in making considerable progress towards clarifying this process."

The team initially focussed on characterising the influence of the RNA structure. Variations of an RNA target molecule were created where the RISC binding site became increasingly difficult to access due to structural differences. Dr. Ameres comments on the findings from the experiment: "The results were very clear indeed. The less accessible the binding site, the less efficient the RISC-induced elimination of the target RNA. Based on this data, we concluded that RISC does not possess the means to change the structure of RNA molecules – an important finding towards the effective application of RNAi."

Another result was equally important to the understanding of RNA interference. The strength of the interaction between target RNA and RISC must exceed a certain threshold in order to trigger initiation of the subsequent RNA elimination process. This result clearly indicates that RISC binds RNA in a more or less random process and that it is the strength of this bond that determines the subsequent fate of the RNA. "One way of looking at this is that, while binding its target RNA, RISC has to carry out

a check to ensure that it is only certain RNAs that are destroyed," explains Dr. Ameres.

"PH.D. PROGRAM" CAREER OPPORTUNITY

The publication of these results in the journal CELL highlights not just the quality of RNA research at the Max F. Perutz Laboratories (a joint establishment of the University of Vienna and the Medical University of Vienna), but also the high standard of training provided for young scientists in dedicated Ph.D. programs. The publication of these results is also the high point of Dr. Ameres' Ph.D. training, which he has now completed in just this type of program. In fact, a special "RNA Biology" Ph.D. program was established at the Campus Vienna Biocenter in June 2007 to ensure that RNA research there retains its leading position in the long term.

The work of molecular biologist Prof. Renée Schroeder also contributed to this achievement. She supported the work of Dr. Ameres using the prize money from the "Wittgenstein Award" presented to her by the FWF in 2003, thereby making an important financial contribution to the continuation of RNA research at the Campus Vienna Biocenter.

Till C. Jelitto | alfa
Further information:
http://www.fwf.ac.at/en/public_relations/press/pv200707-2en.html

Further reports about: Ameres Biocenter RISC RNA RNA interference

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>