Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eye lens and nose cells for smelling have same origin

12.07.2007
A team of researchers at Umeå University in Sweden have discovered a unique mechanism by which the same signal molecule determines the formation of the both the lens of the eye and the olfactory cells of the nose.

Smell and sight are two sensory systems that are crucial to our ability to perceive the world around us. The ability to sense smells is established by the development of the olfactory mucous membrane. The ability to see is similarly dependent on the formation of the lens in the eyes.

Both the mucous membrane for smelling and the lens develop early in the fetal stage, but it has not been known until now precisely what signals govern their formation. A research team at Umeå University can now show that the same signal molecule regulates the formation of both the olfactory cells and the lens cells.

The findings show moreover that cells exposed to the signal for short periods become olfactory cells, while long periods of exposure give rise to lens cells. Otherwise it is a common mechanism for differing concentrations of a signal molecule to lead to different cell types.

... more about:
»formation »lens »olfactory

This discovery, that differences in the length of exposure but not the concentration of the same signal determine the formation of two fundamentally different sensory organs, is of key importance to our understanding of how different types of cells are formed during the fetal period.

The findings have been published in the journal Developmental Cell.

The authors of the article are My Sjödal, Thomas Edlund, and Lena Gunhaga, all at the Umeå Center for Molecular Medicine (UCMM), Umeå University.

M Sjödal, T Edlund, L Gunhaga: Time of Exposure to BMP Signals Plays a Key Role in the Specification of the Olfactory and Lens Placodes Ex Vivo, Developmental Cell, Volume 13, 141-149, 2007.

Information: Lena Gunhaga, UCMM, phone +46-90 785 44 35, mobile +46-70 262 1879, e-mail Lena.Gunhaga@ucmm.umu.se.

Professor Thomas Edlund, UCMM, phone +46-90 785 44 16, mobile +46-73 316 94 52, e-mail Thomas.Edlund@ucmm.umu.se

Pressofficer:Bertil Born; bertil.born@adm.umu.se; +46-703 414 303

Bertil Born | idw
Further information:
http://www.umu.se
http://www.vr.se

Further reports about: formation lens olfactory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>