Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Umeå researchers solve long-standing riddle: Show what enzyme copies genes

12.07.2007
For the first time, it can now be shown what enzyme copies the genetic make-up of cells. The discovery is being published in the journal Science by researchers at Umeå University in Sweden in collaboration with a team in the U.S. led by Thomas A. Kunkel.

The human genome has already been mapped, as have the genomes of several other organisms. On the other hand, little has been known how genes are copied and repaired so efficiently and precisely. These processes always involve a so-called DNA polymerase, an enzyme that performs the actual new growth of genes.

The genes consist of two DNA strands, but scientists have not known what polymerase copies the two DNA strands. It has been known, however, that DNA polymerase epsilon is responsible for a great deal of this synthesis in higher organisms, and that it does so with the greatest precision.

The researchers describe in the article how they mutated DNA polymerase epsilon, creating an enzyme that makes a particular error when it copies genes. This means that the enzyme leaves a signature at all sites where it copies the genes in the cell.

... more about:
»DNA »Epsilon »Polymerase »Strand »enzyme

By reading where this signature is left, the scientists have then been able to determine that DNA polymerase epsilon copies one of the strands, the so-called "leading" strand. For decades researchers have been wondering what enzyme synthesizes this particular part, and now proof has been found.

These research findings, which describe fundamental biological functions, pave the way for an enhanced understanding of how mutations occur in genes, mutations that can lead to cancer, for instance.

Contributors from Umeå University are Erik Johansson, a researcher at the Department of Medical Biochemistry and Biophysics, together with doctoral student Isabelle Isoz and laboratory assistant Else-Britt Lundström.

The U.S. authors Zacchary Pursell and Thomas A. Kunkel work at the National Institute of Environmental Health Sciences, NIH.

The article can be read at http://www.sciencemag.org/ and is titled "Yeast DNA polymerase epsilon participates in leading-strand synthesis" Pursell, Z.F., Isoz, I., Lundström, E.-B., Johansson, E., and Kunkel, T.A.

For more information, please contact Erik Johansson, Dept. of Medical Biochemistry and Biophysics, cell phone: +46 (0)73-620 50 61, phone: +46 (0)90-786 6638, e-mail erik.johansson@medchem.umu.se.

Pressofficer: Bertil Born; bertil.born@adm.umu.se; Mobile: +46-703 414 303

Bertil Born | alfa
Further information:
http://www.info.umu.se/fodb/Projekt.aspx?id=29
http://www.sciencemag.org/

Further reports about: DNA Epsilon Polymerase Strand enzyme

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>