Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Has science unearthed the Holy Grail of pain relief?

12.07.2007
Scientists studying one of nature’s simplest organisms have helped to unravel the structure of a key molecule that controls pain in humans.

The findings – published in the top scientific journal Nature – could rapidly advance research into the next generation of painkillers for relief of chronic conditions such as migraine and backache.

Chronic pain, unlike the acute pain associated with trauma, has no apparent physiological benefit, often being referred to as the ‘disease of pain’.

Complete and lasting relief of chronic pain is rare and often the clinical goal is pain management through one or more medications.

... more about:
»P2X »Relief »pain

But now researchers at The University of Manchester have examined microscopic amoeboid organisms commonly called slime moulds in a bid to gain greater insight into these pain molecules, known as ‘P2X receptors’.

“In humans, P2X receptors look identical to one another and so scientists have had difficulty understanding how they function,” said Dr Chris Thompson, who carried out the research with Professor Alan North and Dr Sam Fountain in the Faculty of Life Sciences.

“By looking at slime mould we were effectively able to turn the evolutionary clock back a billion years to see how a more primitive P2X molecule functions.”

The team discovered that there was only a 10% similarity between human P2X and the slime mould equivalent. They were therefore able to deduce from evolutionary theory that it was these similar parts of the molecule that probably regulate pain in humans.

“It’s a big step forward in understanding how the molecule works and should make it possible to develop drugs that block the receptors’ actions,” said Dr Thompson.

“Inhibiting P2X as a potential pain-relief therapy would be the Holy Grail of rational drug design and could revolutionise the way we manage chronic pain conditions like back pain and migraine.”

The research, published in Nature tomorrow (Thursday, July 12), was funded by the Wellcome Trust, the Medical Research Council and the Lister Institute for Preventive Medicine.

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk

Further reports about: P2X Relief pain

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>