Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A stepwise retreat: how immune cells catch pathogens

12.07.2007
Researchers discover dynamic properties of immune cells’ tentacles

To protect us from disease our immune system employs macrophages, cells that roam our body in search of disease-causing bacteria. With the help of long tentacle-like protrusions, macrophages can catch suspicious particles, pull them towards their cell bodies, internalise and destroy them. Using a special microscopy technique, researchers from the European Molecular Biology Laboratory (EMBL) now for the first time tracked the dynamic behaviour of these tentacles in three dimensions. In the current online issue of PNAS they describe a molecular mechanism that likely underlies the tentacle movement and that could influence the design of new nanotechnologies.

The long cell protrusions that macrophages use as tentacles to go fishing for pathogens are called filopodia. The internal scaffolds of these filopodia are long, dynamic filaments consisting of rows of proteins called actin. The filaments constantly grow and shrink by adding or removing individual actin building blocks. But the dynamic properties of the filopodia and the mechanical forces that they can apply are not fully understood. Using a special microscopy technique a team of researchers from the groups of Ernst Stelzer and Gareth Griffiths at EMBL could for the first time observe the tentacle dynamics in three dimensions and measure their properties to unprecedented detail.

“The filopodia stretch out from the cell surface and upon contact with a suspicious particle they attach to it and immediately retract to pull the particle towards the cell body,” says Holger Kress who carried out the research at EMBL and is now working at Yale University. “We expected the tentacles to move in a continuous, smooth process, but surprisingly we observed discrete steps of filopodia retraction.”

... more about:
»Dynamic »Myosin »filopodia »retraction »tentacle

Highly precise measurements allowed the scientists for the first time to determine the speed and the force of the retraction and revealed that each individual retraction step is 36 nanometres long. These parameters match the properties of a class of proteins called myosins suggesting them as the driving force of filopodia retraction. Myosins are motor proteins, proteins that move along actin filaments and transport cargo. Transporting the filopodia’s internal scaffold myosins help bringing about the retraction. Likely several copies of myosin proteins act in a synchronous fashion to bring about the tentacle motion.

“The insights we gained into the properties of filopodia retraction and the possible molecular mechanism underlying them could find applications in nanotechnology,” says Alexander Rohrbach a former member of Stelzer’s group who is now a professor at the University of Freiburg. “Future synthetic nano-machines must integrate themselves into a system and have to react flexibly to changes within the system. Precisely these properties we have now observed in filopodia retraction. The fascinating principles, which we are beginning to understand, will certainly influence the design of such machines.”

Anna-Lynn Wegener | alfa
Further information:
http://www.embl.org/aboutus/news/press/2007/09jul07/

Further reports about: Dynamic Myosin filopodia retraction tentacle

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>