Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A First-Principles Model of Early Evolution

12.07.2007
In a study publishing in PLoS Computational Biology, Shakhnovich et al present a new model of early biological evolution – the first that directly relates the fitness of a population of evolving model organisms to the properties of their proteins.

Key to understanding biological evolution is an important, but elusive, connection, known as the genotype-phenotype relationship, which translates the survival of entire organisms into microscopic selection for particular advantageous genes, or protein sequences. The study of Shakhnovich et al establishes such connections by postulating that the death rate of an organism is determined by the stability of the least stable of their proteins.

The simulation of the model proceeds via random mutations, gene duplication, organism births via replication, and organism deaths.

The authors find that survival of the population is possible only after a ‘’Big Bang’’ when a very small number of advantageous protein structures is suddenly discovered and exponential growth of the population ensues. The subsequent evolution of the Protein Universe occurs as an expansion of this small set of proteins through a duplication and divergence process that accompanies discovery of new proteins. The model resolves one of the key mysteries of molecular evolution – the origin of highly uneven distribution of fold family and gene family sizes in the Protein Universe. It quantitatively reproduces these distributions pointing out their origin in biased post “Big Bang’’ evolutionary dynamics of discovery of new proteins. The number of genes in the evolving organisms depends on the mutation rate, demonstrating the intricate relationship between macroscopic properties of organisms – their genome sizes – and microscopic properties – stabilities – of their proteins.

... more about:
»Evolution »Shakhnovich »organism

The results of the study suggest a plausible comprehensive scenario of emergence and growth of the Protein Universe in early biological evolution.

PLEASE ADD THIS LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://compbiol.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pcbi.0030139

(link will go live on July 13th)

CITATION: Zeldovich KB, Chen P, Shakhnovich BE, Shakhnovich EI (2007) A first-principles model of early evolution: Emergence of gene families, species, and preferred protein folds. PLoS Comput Biol 3(7): e139. doi:10.1371/journal.pcbi.0030139

CONTACT:
Eugene Shakhnovich
Department of Chemistry and Chemical Biology,
Harvard University,
Cambridge,
Massachusetts,
United States of America
eugene@belok.harvard.edu

Andrew Hyde | alfa
Further information:
http://www.ploscompbiol.org

Further reports about: Evolution Shakhnovich organism

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>