Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First all-African produced genetically engineered maize is resistant to maize streak virus

10.07.2007
Maize streak viruses (MSV), geminiviruses that can destroy most of a maize crop, are endemic to sub-Saharan Africa and adjacent Indian Ocean islands where they are transmitted by leafhoppers in the genus Cicadulina. Maize can supply 50% of the caloric intake in sub-Saharan Africa but, in certain years, a farmer’s entire crop can be wiped out.

Now, scientists at the University of Cape Town, South Africa, along with colleagues at the South African seed company, PANNAR Pty Ltd, have developed a resistant variety of maize that they hope will help alleviate food shortages as well as promote the reputation of genetically engineered (GE) foods in Africa.

Dr. Dionne Shepherd of the University of Cape Town will be presenting the results of her recent work and that of coauthors B. Owor, R. Edema, A. Varsani, D.P. Martin, J.A. Thomson and E.P. Rybicki, at the annual meeting of the American Society of Plant Biologists in Chicago (July 8, 11:20 AM) in a major symposium on Plant Biology in Sub-Saharan Africa organized by Debby Delmer of UC Davis.

Maize, which originated in Mexico, was carried to Africa in the 1500s and eventually displaced native food crops such as sorghum and millet. Maize streak virus, an endemic pathogen of native African grasses, was then carried to maize plants by viruliferous leafhoppers. African scientists have been working for more than a quarter century on developing resistant varieties of maize by selecting and crossing varieties with various degrees of resistance to the virus.

... more about:
»MSV »Pathogen »resistance »resistant

However, resistance requires multiple genes located on different chromosomes, so the process is not straightforward. The group at the University of Cape Town took the opposite approach. They mutated a viral gene that encodes a protein that the virus needs to replicate itself and inserted it into maize plants. When the virus infects one of these transgenic maize plants, the mutated protein, which is expressed at a high level, prevents the virus from replicating and killing the plant. The transgenic maize variety has proven consistently resistant to MSV and the trait can be reliably passed on to the next generation and in crosses to other varieties. Field trials are scheduled to begin soon, not only to test the effectiveness of the technology in the field but also to ensure that the GE maize variety has no unintended effects on beneficial organisms that may feed on it. The resistant maize will also be tested to ensure that the viral protein is digestible and non-allergenic. The MSV-resistant maize is the first GE crop developed and tested solely by Africans.

This group of scientists also surveyed 389 Ugandan MSV isolates to assess the diversity and genetic characteristics of this destructive pathogen. They found that the most prevalent strain of this virus is a product of recombination of different viral genotypes, thus identifying an important source of new pathogenic variants and illustrating the constantly changing evolutionary battle between plants and pathogens. MSV was first sequenced in 1984 and found to contain a genome of only 2700 DNA bases in a circle of single-stranded DNA. When it infects susceptible plants, they produce deformed cobs and are often severely dwarfed. As the name of the virus suggests, the leaves are marked with parallel, yellow-white streaks.

The timing of infection, the maize genotype, and prevailing climatic conditions can all influence the extent of damage wreaked by this viral pathogen. Young plants cannot survive the infection but older plants are better able to contain the infection, resulting in smaller losses of grain. However, drought can have a devastating effect on maize fields over a wide geographical area. Under warm and wet conditions, a long-bodied morph of the leafhopper C. mbila emerges, but this form only travels short distances of 10 meters or less, thus limiting its damage to crops. Under drought conditions, a stronger, short-bodied morph that can fly great distances spreads the disease over large areas, thus exacerbating the effects of the drought itself.

Disease caused by similar geminiviruses, Wheat dwarf virus (WDV) and various sugarcane streak viruses, also affect other crops, including barley, wheat, oats, sugarcane, and millet. Thus, the technology developed for MSV could potentially be adapted to develop resistance in these other crops. Virologist Edward Rybicki and microbiologist Jennifer Thomson are hopeful that this year’s field trials will demonstrate not only the effectiveness of this technology in producing resistance to a destructive pathogen but also the safety of GE foods. Part of the objective is to provide seed that will be sold at a minimal profit to subsistence farmers, thus removing the objection that GE technology is principally profit-driven.

Brian Hyps | EurekAlert!
Further information:
http://www.aspb.org

Further reports about: MSV Pathogen resistance resistant

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>