Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First all-African produced genetically engineered maize is resistant to maize streak virus

10.07.2007
Maize streak viruses (MSV), geminiviruses that can destroy most of a maize crop, are endemic to sub-Saharan Africa and adjacent Indian Ocean islands where they are transmitted by leafhoppers in the genus Cicadulina. Maize can supply 50% of the caloric intake in sub-Saharan Africa but, in certain years, a farmer’s entire crop can be wiped out.

Now, scientists at the University of Cape Town, South Africa, along with colleagues at the South African seed company, PANNAR Pty Ltd, have developed a resistant variety of maize that they hope will help alleviate food shortages as well as promote the reputation of genetically engineered (GE) foods in Africa.

Dr. Dionne Shepherd of the University of Cape Town will be presenting the results of her recent work and that of coauthors B. Owor, R. Edema, A. Varsani, D.P. Martin, J.A. Thomson and E.P. Rybicki, at the annual meeting of the American Society of Plant Biologists in Chicago (July 8, 11:20 AM) in a major symposium on Plant Biology in Sub-Saharan Africa organized by Debby Delmer of UC Davis.

Maize, which originated in Mexico, was carried to Africa in the 1500s and eventually displaced native food crops such as sorghum and millet. Maize streak virus, an endemic pathogen of native African grasses, was then carried to maize plants by viruliferous leafhoppers. African scientists have been working for more than a quarter century on developing resistant varieties of maize by selecting and crossing varieties with various degrees of resistance to the virus.

... more about:
»MSV »Pathogen »resistance »resistant

However, resistance requires multiple genes located on different chromosomes, so the process is not straightforward. The group at the University of Cape Town took the opposite approach. They mutated a viral gene that encodes a protein that the virus needs to replicate itself and inserted it into maize plants. When the virus infects one of these transgenic maize plants, the mutated protein, which is expressed at a high level, prevents the virus from replicating and killing the plant. The transgenic maize variety has proven consistently resistant to MSV and the trait can be reliably passed on to the next generation and in crosses to other varieties. Field trials are scheduled to begin soon, not only to test the effectiveness of the technology in the field but also to ensure that the GE maize variety has no unintended effects on beneficial organisms that may feed on it. The resistant maize will also be tested to ensure that the viral protein is digestible and non-allergenic. The MSV-resistant maize is the first GE crop developed and tested solely by Africans.

This group of scientists also surveyed 389 Ugandan MSV isolates to assess the diversity and genetic characteristics of this destructive pathogen. They found that the most prevalent strain of this virus is a product of recombination of different viral genotypes, thus identifying an important source of new pathogenic variants and illustrating the constantly changing evolutionary battle between plants and pathogens. MSV was first sequenced in 1984 and found to contain a genome of only 2700 DNA bases in a circle of single-stranded DNA. When it infects susceptible plants, they produce deformed cobs and are often severely dwarfed. As the name of the virus suggests, the leaves are marked with parallel, yellow-white streaks.

The timing of infection, the maize genotype, and prevailing climatic conditions can all influence the extent of damage wreaked by this viral pathogen. Young plants cannot survive the infection but older plants are better able to contain the infection, resulting in smaller losses of grain. However, drought can have a devastating effect on maize fields over a wide geographical area. Under warm and wet conditions, a long-bodied morph of the leafhopper C. mbila emerges, but this form only travels short distances of 10 meters or less, thus limiting its damage to crops. Under drought conditions, a stronger, short-bodied morph that can fly great distances spreads the disease over large areas, thus exacerbating the effects of the drought itself.

Disease caused by similar geminiviruses, Wheat dwarf virus (WDV) and various sugarcane streak viruses, also affect other crops, including barley, wheat, oats, sugarcane, and millet. Thus, the technology developed for MSV could potentially be adapted to develop resistance in these other crops. Virologist Edward Rybicki and microbiologist Jennifer Thomson are hopeful that this year’s field trials will demonstrate not only the effectiveness of this technology in producing resistance to a destructive pathogen but also the safety of GE foods. Part of the objective is to provide seed that will be sold at a minimal profit to subsistence farmers, thus removing the objection that GE technology is principally profit-driven.

Brian Hyps | EurekAlert!
Further information:
http://www.aspb.org

Further reports about: MSV Pathogen resistance resistant

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>