Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The University Jaume I patents a fluorescent sensor for citric acid for the food and pharmaceutical industries

10.07.2007
The University Jaume I (UJI) has patented a new fluorescent chemical sensor that is capable of detecting citric acid at low concentrations more rapidly and cheaply than the current optical sensors. The molecule, which has been designed by the Sensors and Supramolecular Photochemistry research group at the UJI, has potential applications in the food and pharmaceutical industries, as well as for diagnosing certain diseases.

The molecule works as a light indicator and emits higher or lower intensity fluorescent light depending on the amount of citric acid present in the sample. In other words, the less citric acid there is present, the less light will be produced, and vice versa. One of the main advantages of the newly designed sensor is its high sensitivity, which allows one citric acid molecule to be detected among millions of water molecules through fluorescence. The systems used today to optically analyse citric acid (the most important being the citrate lyase enzymatic method) are between one hundred and one thousand times less sensitive.

Another advantage of the sensor patented by the UJI is its increased fluorescence intensity. “With the complexes developed it is possible to achieve gains of up to 1500% in fluorescence intensity in the presence of citrate. This implies multiplying the signal by a factor of 15, which results in very reliable measurements,” explains Francisco Galindo, co-author of the research study.

Furthermore, the molecules designed react with the sample immediately, while in the case of the traditional citrate lyase enzyme method it is necessary to wait up to 30 minutes to obtain the results. “This advantage in the data acquisition speed can be very important when it comes to developing automatic real-time measurement systems, such as those required in food quality control to detect possible defects in the manufacturing quality of a given product, or in urgent medical urine or blood tests for the rapid diagnosis of diseases associated with the presence of citric acid,” the researchers point out.

... more about:
»Pharmaceutical »Sensor »UJI »citrate »citric »fluorescent

In fact, the food and pharmaceutical sectors are the main targets of the applications offered by the new fluorescent sensor developed at the UJI. Citric acid is an important component in numerous pharmaceutical preparations, foods, drinks and various industrial products. For example, in the food industry it is important to know the amount of citric acid that is present in products derived from fruits such as oranges or lemons.

In the pharmaceutical industry, citric acid is used as a stabiliser in various formulations, as a drug component and as an anticoagulant in blood for transfusions.

In the medical domain, the new fluorescent sensor can be useful to determine pathological levels of citric acid, that is, it would potentially serve as a tool for diagnosing disease. “The relationship between low citric acid concentrations and cancer processes, such as that of prostate tumours, is well known. The relationship between the absence of citric acid in urine and the likelihood of developing kidney stones is also well known,” the researchers at the UJI explain. Up till now, citric acid has generally been determined by nuclear magnetic resonance in the case of prostate cancer or by the citrate lyase method in the case of kidney stones.

The research was conducted by the researchers Francisco Galindo, Santiago V. Luis, María Isabel Burguete and Laura Vigara, from the Department of Inorganic and Organic Chemistry at the UJI.

Hugo Cerdà | alfa
Further information:
http://www.uji.es/canals/investigacio/

Further reports about: Pharmaceutical Sensor UJI citrate citric fluorescent

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>