Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The University Jaume I patents a fluorescent sensor for citric acid for the food and pharmaceutical industries

10.07.2007
The University Jaume I (UJI) has patented a new fluorescent chemical sensor that is capable of detecting citric acid at low concentrations more rapidly and cheaply than the current optical sensors. The molecule, which has been designed by the Sensors and Supramolecular Photochemistry research group at the UJI, has potential applications in the food and pharmaceutical industries, as well as for diagnosing certain diseases.

The molecule works as a light indicator and emits higher or lower intensity fluorescent light depending on the amount of citric acid present in the sample. In other words, the less citric acid there is present, the less light will be produced, and vice versa. One of the main advantages of the newly designed sensor is its high sensitivity, which allows one citric acid molecule to be detected among millions of water molecules through fluorescence. The systems used today to optically analyse citric acid (the most important being the citrate lyase enzymatic method) are between one hundred and one thousand times less sensitive.

Another advantage of the sensor patented by the UJI is its increased fluorescence intensity. “With the complexes developed it is possible to achieve gains of up to 1500% in fluorescence intensity in the presence of citrate. This implies multiplying the signal by a factor of 15, which results in very reliable measurements,” explains Francisco Galindo, co-author of the research study.

Furthermore, the molecules designed react with the sample immediately, while in the case of the traditional citrate lyase enzyme method it is necessary to wait up to 30 minutes to obtain the results. “This advantage in the data acquisition speed can be very important when it comes to developing automatic real-time measurement systems, such as those required in food quality control to detect possible defects in the manufacturing quality of a given product, or in urgent medical urine or blood tests for the rapid diagnosis of diseases associated with the presence of citric acid,” the researchers point out.

... more about:
»Pharmaceutical »Sensor »UJI »citrate »citric »fluorescent

In fact, the food and pharmaceutical sectors are the main targets of the applications offered by the new fluorescent sensor developed at the UJI. Citric acid is an important component in numerous pharmaceutical preparations, foods, drinks and various industrial products. For example, in the food industry it is important to know the amount of citric acid that is present in products derived from fruits such as oranges or lemons.

In the pharmaceutical industry, citric acid is used as a stabiliser in various formulations, as a drug component and as an anticoagulant in blood for transfusions.

In the medical domain, the new fluorescent sensor can be useful to determine pathological levels of citric acid, that is, it would potentially serve as a tool for diagnosing disease. “The relationship between low citric acid concentrations and cancer processes, such as that of prostate tumours, is well known. The relationship between the absence of citric acid in urine and the likelihood of developing kidney stones is also well known,” the researchers at the UJI explain. Up till now, citric acid has generally been determined by nuclear magnetic resonance in the case of prostate cancer or by the citrate lyase method in the case of kidney stones.

The research was conducted by the researchers Francisco Galindo, Santiago V. Luis, María Isabel Burguete and Laura Vigara, from the Department of Inorganic and Organic Chemistry at the UJI.

Hugo Cerdà | alfa
Further information:
http://www.uji.es/canals/investigacio/

Further reports about: Pharmaceutical Sensor UJI citrate citric fluorescent

More articles from Life Sciences:

nachricht Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?
26.05.2017 | Paul-Ehrlich-Institut - Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>