Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double identities lie behind chromosome disorders

09.07.2007
Chromosome disorders in sex cells cause infertility, miscarriage and irregular numbers of chromosomes (aneuploidy) in neonates. A new study from Karolinska Institutet published in the scientific journal Nature Genetics shows how chromosome disorders can arise when sex cells are formed.

Sex cells contain a control station for monitoring the mechanism that ensures that the correct numbers of chromosomes are distributed during cell division. Scientists have now shown that there is an alternative distribution mechanism in female sex cells that cause chromosome disorders. Aberrant chromosomes orientate themselves like normal chromosomes, and this ability to adopt double identities protects them from detection by the control centre.

“We believe that this new fundamental mechanism can help to explain why chromosome disorders are so common in female sex cells,” says Professor Christer Höög, leader of the study.

The research might eventually lead to new medical treatments able to reduce the risk of foetal damage.

... more about:
»Chromosome »disorder

Over 0.3 per cent of children are born with some kind of chromosome disorder. Most develop Downs Syndrome, or obtain the wrong number of sex chromosomes and develop Turner’s or Klinefelter’s syndrome. Turner’s syndrome only occurs in females and is caused when one of the two X chromosomes is missing. Girls with Turner’s have arrested development and if no treatment is given do not enter puberty. Klinefelter’s syndrome affects males, who receive an extra X chromosome. Symptoms include concentration difficulties, poor motor skills and infertility.

Sabina Bossi | EurekAlert!
Further information:
http://ki.se

Further reports about: Chromosome disorder

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>