MU Researchers Make Discovery in Molecular Mechanics of Phototropism

In a paper published in the Journal of Biological Chemistry, scientists at the University of Missouri-Columbia reported molecular-level discoveries about the mechanisms of phototropism, the directional growth of plants toward or away from light.

Phototropism is initiated when photoreceptors in a plant sense directional blue light. Understanding phototropism is important because it could lead to crop improvement, said Mannie Liscum, professor in the Division of Biological Sciences in MU's College of Arts and Science and Christopher S. Bond Life Sciences Center.

“By understanding how phototropism works at a molecular level, we can work toward engineering plants that produce more biomass or have increased drought tolerance, among other things. For example, we could use this information to optimize plants' ability to capture light for photosynthesis, which would result in more energy capture and thus growth, or potentially agronomically useful biomass,” Liscum said.

Liscum and doctoral student Ullas Pedmale studied the regulation of phototropic signaling in Arabidopsis thaliana, a weedy flowering plant commonly used as a model in laboratory studies. Focusing on non-phototropic hypocotyls 3 (NPH3), a protein known to be essential for phototropic responses, they examined its phosphorylation, the addition or removal of a phosphate group to the protein molecule. Using a series of pharmacological treatments and immunoblot assays, the team discovered that NPH3 was a phosphorylated protein – a protein with a phosphate group attached – in seedlings grown in the darkness. When the seedlings were exposed to light, they became dephosphorylated, or lost their phosphate group.

These results suggest that the absorption of light by phot1, the dominant receptor controlling phototropism, leads to NPH3's loss of a phosphate group, allowing further progression of phototropic signaling.

“We found that exposure to directional blue light stimulated NPH3's dephosphorylation,” Liscum said. “NPH3 exists as a phosphorylated protein in darkness and is rapidly dephosphorylated by a yet unidentified protein phosphatase in response to phot1 photoactivation by blue light.”

Liscum and Pedmale now plan to study which amino acids on NPH3 are reversibly phosporylated and how NPH3 is involved in regulating other processes within plants.

Media Contact

Katherine Kostiuk EurekAlert!

More Information:

http://www.missouri.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors