Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossil DNA illuminates life

06.07.2007
Ancient Greenland was green. New Danish research has shown that it was covered in conifer forest and, like southern Sweden today, had a relatively mild climate. Eske Willerslev, a professor at Copenhagen University, has analysed the world’s oldest DNA, preserved under the kilometre-thick icecap.

The DNA is likely close to half a million years old, and the research is painting a picture which is overturning all previous assumptions about biological life and the climate in Greenland. The results have just been published in the prestigious scientific journal Science.

Ten percent of the Earth’s surface has been covered with ice for thousands of years. No one knows what lies beneath the kilometre-deep icecaps. These are the earth’s unknown and unexplored regions. But some have begun the exploration. Several projects under Danish leadership have been drilling through the icecap on Greenland, and collected complete columns of ice all the way from the top to the bottom. The ice has annual layers and is a frozen archive of the world’s climate.

“I wonder, if there could also be DNA down there”, thought Eske Willerslev, who is the world’s leading expert in extracting DNA from organisms buried in permafrost. His thinking was that perhaps he could reconstruct the environment of the past.

... more about:
»DNA »Eske »Greenland »ICECAP »Willerslev »ice sheet »sample

Ice-core samples of ancient sediment

The icecap itself is comprised of pure ice, but the lower sections are mixed with mud from the bottom, and it was this mud that Eske Willerslev wanted to research. He got base layer samples from three drillings; DYE-3 drilling in the southern part of Greenland, the GRIP drilling in the middle of the Greenlandic ice sheet, and for the third core base layer sample he used the John Evans glacier in Canada.

The Canadian glacier is only a few thousand years old, and samples from it were used to test the method. From the base layer samples of the ice he found DNA from three of the four most common plants which grow in the area. “That means that, what one finds under the ice, represents the local environment” explains Eske Willerslev.

In the base layer sample from the GRIP drilling, from the middle of the Greenlandic ice sheet, there were no DNA remains at all- not from plants, mammals or insects. “The explanation,” he says, “is that the ice in the middle of the ice sheet is very thick- over three kilometres, and the greater pressure produces a higher temperature at the base, and so the DNA material, which cannot tolerate warmth, disintegrates”.

Ancient Flora and Fauna

At the DYE-3 drilling-site, the ice is ‘only’ two kilometres thick, and here the DNA-material was so well preserved that Eske Willerslev could extract genetic traces of a long list of plants and insects and thereby reconstruct ancient plant and animal life.

“This genetic material presents a biological environment, which is completely different to what we see today.” he says. “We have found grain, pine, yew and alder. These correspond to the landscapes we find in Eastern Canada and in the Swedish forests today. The trees provide a backdrop from which we can also ascertain the climate since each species has its own temperature requirements. The yew trees reveal that the temperature during the winter could not have been lower than minus 17 degrees Celsius, and the presence of other trees shows that summer temperatures were at least 10 degrees”.

Climate theories over-turned

The research results are the first direct proof that there was forest in southern Greenland. Furthermore Willerslev found genetic traces of insects such as butterflies, moths, flies and beetles. But when was that" According to most scientific theories to date, all of southern Greenland and most of the northern part were ice-free during the last interglacial period 125,000 years ago, when the climate was 5 degrees warmer than the interglacial period we currently live in.

This theory however, was not confirmed by Willerslev and co-workers subsequent datings. He analysed the insects’ mitochondria, which are special genomes that change with time and like a clock can be used to date the DNA. He also analysed their amino acids which also change over time. Both datings showed that the insects were at least 450,000 years old.

The ice-core researchers are experts at analysing the fine dust which blows onto the ice and is preserved year by year. They advocate two further datings. One is dating by optically stimulated luminescence. It is a method where the examined minerals can be affected to give off a type of light, which depends on how long it has been since the minerals were last exposed to sunlight.

The other method is radioactive dating. “We can fix when the ice was last in contact with the atmosphere,” says Jørgen Peder Steffensen who is a researcher in the Ice and Climate group at the Niles Bohr Institute at Copenhagen University. He explains that the special isotopes, Beryllium-10 and Chlorine-36 both have a particular half-life of radioactive decay (just like Carbon-14). The relation between them can date when the ice and dust were buried and no longer came in contact with the atmosphere.

The dating of dust particles also showed that it has been at least 450,000 years ago since the area of the DYE-3 drilling, in the southern part of Greenland, was ice-free.

That signifies that there was ice there during the Eemian interglacial period 125,000 years ago. It means that although we are now confronted with global warming, the whole ice sheet will not melt and bring about the tremendous sea-level rises which have been the subject of so much discussion.

Gertie Skaarup | EurekAlert!
Further information:
http://www.nbi.dk
http://www.bi.ku.dk

Further reports about: DNA Eske Greenland ICECAP Willerslev ice sheet sample

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>