Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faulty cell membrane repair causes heart disease

05.07.2007
During vigorous exercise, heart muscle cells take a beating. In fact, some of those cells rupture, and if not for a repair process capable of resealing cell membranes, those cells would die and cause heart damage (cardiomyopathy).

Researchers at the University of Iowa Roy J. and Lucille A. Carver College of Medicine have discovered a specific repair mechanism in heart muscle and identified a protein called dysferlin that is critical for resealing heart muscle cell membranes.

The study, led by UI researcher and Howard Hughes Medical Institute investigator Kevin Campbell, Ph.D., also shows that loss of dysferlin causes cardiomyopathy in mice. Furthermore, heart damage in these mice is exaggerated by vigorous exercise or by inherent muscle weakness caused by a muscular dystrophy defect. The results are published in the July 1 issue of the Journal of Clinical Investigation.

Active tissues, like a beating heart or contracting muscle, need mechanisms to repair the inevitable cell membrane tears caused by physical stress and strain. In 2003, Campbell and his colleagues identified dysferlin as a key protein in this vital repair mechanism in skeletal muscle. In humans, dysferlin deficiency -- which leads to faulty muscle membrane repair -- causes three types of muscular dystrophy.

The new study expands knowledge of dysferlin function, showing that dysferlin-mediated membrane repair is also important in heart muscle cells and suggests that inadequate membrane repair can also lead to cardiomyopathy.

"If we could boost this repair mechanism, it might be possible to slow cardiac and skeletal muscle damage in muscular dystrophy patients," said Campbell who also holds the Roy J. Carver Biomedical Research Chair in Molecular Physiology and is head of the department and a UI professor of neurology.

The UI team initially found that young mice that lacked dysferlin showed no heart damage, which is consistent with what is seen in humans with dysferlin mutations. However, a case study describing late-onset cardiomyopathy in a Japanese patient with a dysferlin deficiency prompted the UI team to look at the mice as they aged.

They found that the mice started to develop cardiomyopathy at about one year of age (middle aged for a mouse). The team also found that exercise exaggerated the stress-induced injury in these mice, suggesting that inadequate membrane repair led to cardiomyopathy.

The research team also bred mice that lacked both dysferlin and the protein dystrophin, which is missing in patients with Duchenne muscular dystrophy. These "double knockout" mice had early onset cardiomyopathy, which was much more severe than in mice with either of the single mutations. The results suggest that dysferlin might provide some protection against heart damage in Duchenne patients, at least at a young age, by delaying the onset of cardiomyopathy.

"We hope these findings will stimulate clinicians to look at the cardiac health of muscular dystrophy patients and the overall muscle health of patients with cardiomyopathy," Campbell said.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

Further reports about: Campbell Membrane cardiomyopathy dysferlin dystrophy muscular dystrophy repair

More articles from Life Sciences:

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Global threat to primates concerns us all

19.01.2017 | Ecology, The Environment and Conservation

Scientist from Kiel University coordinates Million Euros Project in Inflammation Research

19.01.2017 | Awards Funding

The Great Unknown: Risk-Taking Behavior in Adolescents

19.01.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>