Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faulty cell membrane repair causes heart disease

05.07.2007
During vigorous exercise, heart muscle cells take a beating. In fact, some of those cells rupture, and if not for a repair process capable of resealing cell membranes, those cells would die and cause heart damage (cardiomyopathy).

Researchers at the University of Iowa Roy J. and Lucille A. Carver College of Medicine have discovered a specific repair mechanism in heart muscle and identified a protein called dysferlin that is critical for resealing heart muscle cell membranes.

The study, led by UI researcher and Howard Hughes Medical Institute investigator Kevin Campbell, Ph.D., also shows that loss of dysferlin causes cardiomyopathy in mice. Furthermore, heart damage in these mice is exaggerated by vigorous exercise or by inherent muscle weakness caused by a muscular dystrophy defect. The results are published in the July 1 issue of the Journal of Clinical Investigation.

Active tissues, like a beating heart or contracting muscle, need mechanisms to repair the inevitable cell membrane tears caused by physical stress and strain. In 2003, Campbell and his colleagues identified dysferlin as a key protein in this vital repair mechanism in skeletal muscle. In humans, dysferlin deficiency -- which leads to faulty muscle membrane repair -- causes three types of muscular dystrophy.

The new study expands knowledge of dysferlin function, showing that dysferlin-mediated membrane repair is also important in heart muscle cells and suggests that inadequate membrane repair can also lead to cardiomyopathy.

"If we could boost this repair mechanism, it might be possible to slow cardiac and skeletal muscle damage in muscular dystrophy patients," said Campbell who also holds the Roy J. Carver Biomedical Research Chair in Molecular Physiology and is head of the department and a UI professor of neurology.

The UI team initially found that young mice that lacked dysferlin showed no heart damage, which is consistent with what is seen in humans with dysferlin mutations. However, a case study describing late-onset cardiomyopathy in a Japanese patient with a dysferlin deficiency prompted the UI team to look at the mice as they aged.

They found that the mice started to develop cardiomyopathy at about one year of age (middle aged for a mouse). The team also found that exercise exaggerated the stress-induced injury in these mice, suggesting that inadequate membrane repair led to cardiomyopathy.

The research team also bred mice that lacked both dysferlin and the protein dystrophin, which is missing in patients with Duchenne muscular dystrophy. These "double knockout" mice had early onset cardiomyopathy, which was much more severe than in mice with either of the single mutations. The results suggest that dysferlin might provide some protection against heart damage in Duchenne patients, at least at a young age, by delaying the onset of cardiomyopathy.

"We hope these findings will stimulate clinicians to look at the cardiac health of muscular dystrophy patients and the overall muscle health of patients with cardiomyopathy," Campbell said.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

Further reports about: Campbell Membrane cardiomyopathy dysferlin dystrophy muscular dystrophy repair

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>