Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A simple magnet can control the color of a liquid, making new technologies possible

Research by UC Riverside's Yadong Yin and colleagues will be featured on the inside cover of Angewandte Chemie, a top science journal

University of California, Riverside nanotechnologists have succeeded in controlling the color of very small particles of iron oxide suspended in water simply by applying an external magnetic field to the solution. The discovery has potential to greatly improve the quality and size of electronic display screens and to enable the manufacture of products such as erasable and rewritable electronic paper and ink that can change color electromagnetically.

In their experiments, the researchers found that by changing the strength of the magnetic field they were able to change the color of the iron oxide solution – similar to adjusting the color of a television screen image.

When the strength of the magnetic field is changed, it alters the arrangement of the spherical iron oxide particles in solution, thereby modifying how light falling on the particles passes through or is deflected by the solution.

Study results appear in Angewandte Chemie International Edition’s online edition today. The research paper is scheduled to appear in print in issue 34 of the journal. Identified by Angewandte Chemie as a “very important paper,” the research will be featured on the inside cover of the print issue.

“The key is to design the structure of iron oxide nanoparticles through chemical synthesis so that these nanoparticles self-assemble into three-dimensionally ordered colloidal crystals in a magnetic field,” said Yadong Yin, an assistant professor of chemistry who led the research.

A nanoparticle is a microscopic particle whose size is measured in nanometers, a nanometer being a billionth of a meter. (A pin head is 1 million nanometers wide.)

A colloid is a substance comprised of small particles uniformly distributed in another substance. Milk, paint and blood are examples of colloids.

“By reflecting light, these crystals – also called photonic crystals – show brilliant colors,” Yin said. “Ours is the first report of a photonic crystal that is fully tunable in the visible range of the electromagnetic spectrum, from violet light to red light.”

A photonic crystal controls the flow of light (photons) and works like a semiconductor for light. The nanoparticles’ spacing dictates the wavelength of light that a photonic crystal reflects.

Iron oxide (formula: Fe3O4) nanoparticles are “superparamagnetic,” meaning that they turn magnetic only in the presence of an external magnetic field. In contrast, “ferromagnetic” materials become magnetized in a magnetic field and retain their magnetism when the field is removed.

The researchers used the superparamagnetic property of iron oxide particles to tune the spacing between nanoparticles, and therefore the wavelength of the light reflection – or the color of the colloidal crystals – by changing the strength of the external magnetic field.

“Other reported photonic crystals can only reflect light with a fixed wavelength,” Yin said. “Our crystals, on the other hand, show a rapid, wide and fully reversible optical response to the external magnetic field.”

Photonic materials such as those used by Yin and his team could help in the fabrication of new optical microelectromechanical systems and reflective color display units. They also have applications in telecommunication (fiber optics), sensors and lasers.

“This is an elegant method that allows researchers in the field to assemble photonic crystals and control their spacing by using a magnetic field,” said Orlin Velev, an associate professor of chemical and biomolecular engineering at North Carolina State University, Raleigh, N.C., who was not involved in the research. “A simple magnet can be used to change the color of a suspension throughout the whole visible spectra. This has potential to result in usable precursors for various photonic devices.”

“What should make the technology commercially attractive is that iron oxide is cheap, non-toxic and available in plenty,” Yin said.

Yin explained that the new technology can be used to make an inexpensive color display by forming millions of small pixels using the photonic crystals. “A different color for each pixel can be assigned using a magnetic field,” he said. “The advantage is that you need just one material – for example, photonic crystals like iron oxide – for all the pixels. Moreover, you don’t need to generate light in each pixel. You would be using reflected light to create the images – a form of recycling.”

Iqbal Pittalwala | EurekAlert!
Further information:

Further reports about: Iron Magnetic Nanometer Oxide Photonic Yin magnetic field nanoparticle photonic crystals reflect

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>