Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microscale Chemical Factory

04.07.2007
Flow-through multistep synthesis

Miniaturization is invading the world of chemical syntheses. Since typical chemical syntheses take place in several reaction steps with various separation or purification steps in between, microchemistry has almost always been limited to one-step reactions or sequences of reactions requiring no purification between steps.

Researchers at the Massachusetts Institute of Technology (MIT) have now produced an integrated multiple-step microscale production line. As reported in the journal Angewandte Chemie, their process includes three reaction steps and two separation processes (one gas–liquid and one liquid–liquid separation). Because it is arranged in a microscale reaction network, it is even possible to configure this process so that related compounds can be simultaneously produced in parallel.

To fully exploit the potential of microscale reaction technology, it is crucial to integrate the necessary separation steps. A team headed by Klavs F. Jensen has recently developed an efficient microfluidic separation technique and has now integrated this concept into a continuously operating, three-step reaction system. Microscale separations are driven by different principles than separations at normal scale, because in microfluidic systems, surface tension forces dominate over gravity.

... more about:
»Separation »microscale »reaction

This is how the microfluidic separation works: A porous separation membrane made of a fluoropolymer is coated with the organic phase of the mixture, which can “sneak through” the fine pores in the membrane. The aqueous phase to be separated off cannot coat the pores that have already been coated by the organic phase, because the two liquids are not miscible; the water can thus not pass through the membrane. The second separation, a gas–liquid separation, is based on the same principle: In this case, the liquid, which contains the intermediate product, wets the membrane and passes through the pores. Meanwhile, the coated membrane blocks the nitrogen gas that is released during the reaction.

To demonstrate their system, the researchers chose the synthesis of carbamates, compounds that are used as pesticides, among other things, and are important building blocks and reagents in chemical syntheses. The three-step synthesis used to make carbamates (the Curtius Rearrangement) involves intermediate products (azides, isocyanates) that have the potential to be dangerous, since some of these types of compounds pose an explosive or health hazard. The advantage of the microscale reaction system is that these intermediates are formed in situ and are then immediately consumed, so they don’t need to be isolated or stored.

If, after the second separation step, the product stream is divided and fed into multiple microreactors, each with a different reagent, a series of different but related carbamates can be produced in parallel.

Author: Klavs F. Jensen, Massachusetts Institute of Technology, Cambridge (USA), http://web.mit.edu/CHEME/people/faculty/jensen.html

Title: Multistep Continuous-Flow Microchemical Synthesis involving Multiple Reactions and Separations

Angewandte Chemie International Edition 2007, 46, No. 30, 5704–5708, doi: 10.1002/anie.200701434

Klavs F. Jensen | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://web.mit.edu/CHEME/people/faculty/jensen.html

Further reports about: Separation microscale reaction

More articles from Life Sciences:

nachricht Sleep as energy saving mode
21.11.2017 | Universitätsspital Bern

nachricht Water world
20.11.2017 | Washington University in St. Louis

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>