Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microscale Chemical Factory

04.07.2007
Flow-through multistep synthesis

Miniaturization is invading the world of chemical syntheses. Since typical chemical syntheses take place in several reaction steps with various separation or purification steps in between, microchemistry has almost always been limited to one-step reactions or sequences of reactions requiring no purification between steps.

Researchers at the Massachusetts Institute of Technology (MIT) have now produced an integrated multiple-step microscale production line. As reported in the journal Angewandte Chemie, their process includes three reaction steps and two separation processes (one gas–liquid and one liquid–liquid separation). Because it is arranged in a microscale reaction network, it is even possible to configure this process so that related compounds can be simultaneously produced in parallel.

To fully exploit the potential of microscale reaction technology, it is crucial to integrate the necessary separation steps. A team headed by Klavs F. Jensen has recently developed an efficient microfluidic separation technique and has now integrated this concept into a continuously operating, three-step reaction system. Microscale separations are driven by different principles than separations at normal scale, because in microfluidic systems, surface tension forces dominate over gravity.

... more about:
»Separation »microscale »reaction

This is how the microfluidic separation works: A porous separation membrane made of a fluoropolymer is coated with the organic phase of the mixture, which can “sneak through” the fine pores in the membrane. The aqueous phase to be separated off cannot coat the pores that have already been coated by the organic phase, because the two liquids are not miscible; the water can thus not pass through the membrane. The second separation, a gas–liquid separation, is based on the same principle: In this case, the liquid, which contains the intermediate product, wets the membrane and passes through the pores. Meanwhile, the coated membrane blocks the nitrogen gas that is released during the reaction.

To demonstrate their system, the researchers chose the synthesis of carbamates, compounds that are used as pesticides, among other things, and are important building blocks and reagents in chemical syntheses. The three-step synthesis used to make carbamates (the Curtius Rearrangement) involves intermediate products (azides, isocyanates) that have the potential to be dangerous, since some of these types of compounds pose an explosive or health hazard. The advantage of the microscale reaction system is that these intermediates are formed in situ and are then immediately consumed, so they don’t need to be isolated or stored.

If, after the second separation step, the product stream is divided and fed into multiple microreactors, each with a different reagent, a series of different but related carbamates can be produced in parallel.

Author: Klavs F. Jensen, Massachusetts Institute of Technology, Cambridge (USA), http://web.mit.edu/CHEME/people/faculty/jensen.html

Title: Multistep Continuous-Flow Microchemical Synthesis involving Multiple Reactions and Separations

Angewandte Chemie International Edition 2007, 46, No. 30, 5704–5708, doi: 10.1002/anie.200701434

Klavs F. Jensen | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://web.mit.edu/CHEME/people/faculty/jensen.html

Further reports about: Separation microscale reaction

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>