Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine worm opens new window on early cell development

04.07.2007
Oregon researchers find ancient genetic mechanism guiding cell diversity -- one with ties to cancer

University of Oregon biologists studying a common ocean-dwelling worm have uncovered potentially fundamental insights into the evolutionary origin of genetic mechanisms, which when compromised in humans play a role in many forms of cancer.

Their research, appearing in the July issue of the journal Developmental Cell, also increases the visibility of a three-year effort at the UO to promote use of the bristle worm Platynereis dumerilii as a model organism for the study of evolutionary origins of cell types and animal forms.

The marine worm develops by a stereotypic pattern of asymmetric cell divisions generating differently sized embryonic cells. Platynereis dumerilii, the researchers wrote, “appears to have retained ancestral morphological and genomic features, including a slowly evolving protein complement,” and, therefore, can be considered a living fossil.

“Our studies of this organism, called a polychaete annelid, a marine relative of earthworms, have provided potentially fundamental insights into the evolutionary origin of the genetic mechanisms that determine how different cell types are produced during animal embryogenesis,” said lead author Stephan Q. Schneider, a postdoctoral researcher in the UO Institute of Molecular Biology.

The genetic mechanism, in this case, is the beta-catenin signaling pathway and its regulation after cell divisions. Beta-catenin is a cellular protein, which regulates cell proliferation and communication between cells.

“This ancient mechanism remains a central feature of animal development in all animals today, and malfunction of this mechanism in humans is associated with some of the most common and deadly forms of cancer, including colon cancer and melanoma,” Schneider said.

Schneider and co-author Bruce Bowerman, a professor of molecular biology, identified a highly conserved beta-catenin in this ancient worm and documented the protein’s subcellular accumulation in 390 cells produced during the division of fertilized eggs during 195 separate embryonic cell cycles.

Surprisingly, they said, they found an accumulation of beta-catenin in only one of the two daughter cells after each cell division. They showed that the regulation of beta-catenin accumulation forms a molecular switch between two new daughter cells, causing the cells to be different from one another. This universal mechanism operates in embryos as a binary decision-maker, creating an organism with a diversity of cell types.

Beta-catenin has been the focus of research in other model systems, such as mice, fruit flies and roundworms, but never in these ancient slowly evolving invertebrates used in the UO research. The protein appears to be conserved throughout the animal kingdom.

In humans suffering from a variety of cancers, a breakdown in the normal regulation of beta-catenin signaling is thought to be responsible for the growth of related tumors. Coupled with similar findings involving beta-catenin in the nematode Caenorhabditis elegans, a roundworm found in soil, the new UO report suggests an ancient metazoan origin and role for beta-catenin protein in the earliest stages of cellular development.

The findings, Bowerman said, suggest that the genetic pathway in the marine worm may be one of the earliest mechanisms used in embryogenesis to make cells adopt different roles during development. The worms used in the UO study originated from the Mediterranean.

“It is intriguing that key components of the widely conserved beta-catenin cell-signaling pathway appear to specify cell fate throughout development in an embryo that, given the invariance of the embryonic cell lineage and the prevalence of asymmetric cell divisions, has been viewed as a classic example of mosaic development,” Schneider and Bowerman wrote in their conclusion.

There are some 10,000 species of polychaete annelids, dating back to the Paleozoic era, which started 542 million years ago. Polychaete refers to “many hairs” or “many bristles” that come off protrusions of the worms’ bodies, which consist of fluid-filled tubes within tubes. These worms are bilaterally symmetrical with closed circulatory systems. Their ancient simplicity, Bowerman said, makes the Platynereis a rather uncomplicated model system for studying such protein interactions.

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu
http://www.embl.org/aboutus/news/press/2007/29jun07/
http://www.molbio.uoregon.edu/facres/bowerman.html

Further reports about: ANCIENT Beta-Catenin Bowerman Development Embryo Origin genetic mechanism

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>