Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine worm opens new window on early cell development

04.07.2007
Oregon researchers find ancient genetic mechanism guiding cell diversity -- one with ties to cancer

University of Oregon biologists studying a common ocean-dwelling worm have uncovered potentially fundamental insights into the evolutionary origin of genetic mechanisms, which when compromised in humans play a role in many forms of cancer.

Their research, appearing in the July issue of the journal Developmental Cell, also increases the visibility of a three-year effort at the UO to promote use of the bristle worm Platynereis dumerilii as a model organism for the study of evolutionary origins of cell types and animal forms.

The marine worm develops by a stereotypic pattern of asymmetric cell divisions generating differently sized embryonic cells. Platynereis dumerilii, the researchers wrote, “appears to have retained ancestral morphological and genomic features, including a slowly evolving protein complement,” and, therefore, can be considered a living fossil.

“Our studies of this organism, called a polychaete annelid, a marine relative of earthworms, have provided potentially fundamental insights into the evolutionary origin of the genetic mechanisms that determine how different cell types are produced during animal embryogenesis,” said lead author Stephan Q. Schneider, a postdoctoral researcher in the UO Institute of Molecular Biology.

The genetic mechanism, in this case, is the beta-catenin signaling pathway and its regulation after cell divisions. Beta-catenin is a cellular protein, which regulates cell proliferation and communication between cells.

“This ancient mechanism remains a central feature of animal development in all animals today, and malfunction of this mechanism in humans is associated with some of the most common and deadly forms of cancer, including colon cancer and melanoma,” Schneider said.

Schneider and co-author Bruce Bowerman, a professor of molecular biology, identified a highly conserved beta-catenin in this ancient worm and documented the protein’s subcellular accumulation in 390 cells produced during the division of fertilized eggs during 195 separate embryonic cell cycles.

Surprisingly, they said, they found an accumulation of beta-catenin in only one of the two daughter cells after each cell division. They showed that the regulation of beta-catenin accumulation forms a molecular switch between two new daughter cells, causing the cells to be different from one another. This universal mechanism operates in embryos as a binary decision-maker, creating an organism with a diversity of cell types.

Beta-catenin has been the focus of research in other model systems, such as mice, fruit flies and roundworms, but never in these ancient slowly evolving invertebrates used in the UO research. The protein appears to be conserved throughout the animal kingdom.

In humans suffering from a variety of cancers, a breakdown in the normal regulation of beta-catenin signaling is thought to be responsible for the growth of related tumors. Coupled with similar findings involving beta-catenin in the nematode Caenorhabditis elegans, a roundworm found in soil, the new UO report suggests an ancient metazoan origin and role for beta-catenin protein in the earliest stages of cellular development.

The findings, Bowerman said, suggest that the genetic pathway in the marine worm may be one of the earliest mechanisms used in embryogenesis to make cells adopt different roles during development. The worms used in the UO study originated from the Mediterranean.

“It is intriguing that key components of the widely conserved beta-catenin cell-signaling pathway appear to specify cell fate throughout development in an embryo that, given the invariance of the embryonic cell lineage and the prevalence of asymmetric cell divisions, has been viewed as a classic example of mosaic development,” Schneider and Bowerman wrote in their conclusion.

There are some 10,000 species of polychaete annelids, dating back to the Paleozoic era, which started 542 million years ago. Polychaete refers to “many hairs” or “many bristles” that come off protrusions of the worms’ bodies, which consist of fluid-filled tubes within tubes. These worms are bilaterally symmetrical with closed circulatory systems. Their ancient simplicity, Bowerman said, makes the Platynereis a rather uncomplicated model system for studying such protein interactions.

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu
http://www.embl.org/aboutus/news/press/2007/29jun07/
http://www.molbio.uoregon.edu/facres/bowerman.html

Further reports about: ANCIENT Beta-Catenin Bowerman Development Embryo Origin genetic mechanism

More articles from Life Sciences:

nachricht Historical rainfall levels are significant in carbon emissions from soil
30.05.2017 | University of Texas at Austin

nachricht 3D printer inks from the woods
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>