Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Key to male infertility

A factor in immune cells regulates human semen and seems to determine whether a man will be fertile, according to a new study.

Yousef Al-Abed, PhD, and his colleagues at The Feinstein Institute for Medical Research have isolated an immune substance called macrophage migration inhibitory factor (MIF) in semen samples from infertile and reproductively healthy men. MIF is key to helping sperm mature, which is necessary for its union with an egg. The finding could lead to a diagnostic test to determine fertility status.

The study appears in the latest issue of Molecular Medicine. The semen samples were collected from men three to five days after a period of sexual abstinence. The scientists had no idea when analyzing levels of MIF whether the sample came from any of the 68 men who had problems conceiving or from the 27 healthy controls. The findings have a Goldilocks kind of quality: Those with infertility problems had MIF levels that were either too high or too low. Those who had no problems conceiving had levels that were just right.

When the scientists added MIF into lab dishes filled with healthy sperm, it decreased the count and impaired their motility.

If MIF has a role in infertility, Dr. Al-Abed and his colleagues are wondering whether it might just work as a form of male contraception. In the meantime, the scientists have a patent on an assay that can be used to analyze MIF levels to help determine whether a man will have problems conceiving. About 15 percent of couples attempting to get pregnant for the first time have problems conceiving. About 40 percent of infertility problems are due to disorders in the male.

MIF is a key player of the immune system. MIF was identified 40 years ago but it was only recently that scientists discovered its role as a pro-inflammatory substance. MIF has now been linked to many autoimmune and inflammatory diseases - such as diabetes and sepsis - and Al-Abed, an organic chemist by training, has been trying to identify and design small molecules that would block MIF activity.

The Feinstein researchers recently identified a critical area on the MIF protein surface that is crucial for the inflammatory response. Such a substance designed to target this area could be used to treat a variety of conditions, including septic shock, sepsis, rheumatoid arthritis and diabetes. The team designed a specific inhibitor called ISO-1 to fit into this pro-inflammatory site. In an animal model of sepsis, ISO-1 abolishes MIF’s potent inflammatory abilities and the animals respond dramatically. They lived through the once-fatal sepsis.

In patients in the throes of sepsis - an over-reactive and potentially fatal immune response to a bacterial infection - MIF concentrations are 10 to 20 times higher than normal. If MIF goes down, the chance that patients will survive sepsis is increased dramatically. “The idea is to suppress inflammation so that cells stop producing MIF,” said Dr. Al-Abed.

Every year, 215,000 Americans die of sepsis, a systemic inflammatory reaction to infection. Another 500,000 survive the infection, and scientists are still trying to figure out why these patients survive and others don’t. There are no treatments for this massive all-out war on the body. Those who survive often face serious cardiovascular problems. Scientists examining cardiac function during sepsis have identified macrophage migration inhibitory factor (MIF) as a key factor in heart damage. And antibodies targeted to MIF, so-called anti-MIF antibodies, significantly improves cardiac performance during septic shock.

MIF levels are also two times higher in autoimmune diseases like rheumatoid arthritis and diabetes. In the laboratory, Al-Abed and his colleagues found that having MIF on board in high amounts in animals prone to diabetes set the disease process in motion weeks earlier than expected. The team is now trying to design a clinical study to look at MIF levels in type 1, or juvenile, diabetes.

One thing has become clear about the MIF molecule: It needs a network. To act as a pro-inflammatory soldier, it relies on other substances to help. “MIF on its own is not toxic,” Dr. Al-Abed said. They are now trying to figure out what substances MIF partners with to do its dirty work.

Margot Puerta | EurekAlert!
Further information:

Further reports about: Al-Abed Diabetes MIF Sepsis conceiving infertility inflammatory

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>