Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Critical protein prevents DNA damage from persisting through generations

02.07.2007
A protein long known to be involved in protecting cells from genetic damage has been found to play an even more important role in protecting the cell's offspring. New research by a team of scientists at Rockefeller University, Howard Hughes Medical Institute and the National Cancer Institute shows that the protein, known as ATM, is not only vital for helping repair double-stranded breaks in DNA of immune cells, but is also part of a system that prevents genetic damage from being passed on when the cells divide.

Early in the life of B lymphocytes -- the immune cells responsible for hunting down foreign invaders and labeling them for destruction -- they rearrange their DNA to create various surface receptors that can accurately identify different intruders, a process called V(D)J recombination. Now, in an study published online today in the journal Cell, Rockefeller University Professor Michel Nussenzweig, in collaboration with his brother André Nussenzweig at NCI and their colleagues, shows that when the ATM protein is absent, chromosomal breaks created during V(D)J recombination go unrepaired, and checkpoints that normally prevent the damaged cell from replicating are lost.

Normal lymphocytes contain a number of restorative proteins, whose job it is to identify chromosomal damage and repair it or, if the damage is irreparable, prevent the cell from multiplying. Earlier research by André and Michel Nussenzweig, who is an investigator at HHMI, had identified other DNA repair proteins that are important during different phases of a B lymphocyte's life. It was during one of these studies, which examined genetic damage late in the life of a B cell, that they came across chromosomal breaks that could not be explained.

So the researchers began to look into the potential role of V(D)J recombination. "We were not expecting it to be responsible for the breaks we were seeing," says Michel, Sherman Fairchild Professor and head of the Laboratory of Molecular Immunology. "Because for it to be responsible, the breaks would have had to happen early on, the cell would have to divide, mature, maintain the breaks, and stay alive with broken chromosomes."

... more about:
»ATM »DNA »breaks »chromosomal »prevent

This, in fact, was precisely what they found.

The ATM protein appears to have two roles in a B cell: It helps repair the DNA double-strand breaks, and it activates the cell-cycle checkpoint that prevents genetically damaged cells from dividing. "ATM is required for a B cell to know that it has a broken chromosome. And if it doesn't know that it seems to be able to keep on going," says Michel.

Since the ATM protein is mutated in a number of lymphomas -- cancers of the lymph and immune system -- the new finding suggests to researchers that the lymphocytes could have been living with DNA damage for a long time, and that this damage likely plays a role in later chromosomal translocations, rearrangements of genetic materials that can lead to cancer.

Michel and his brother, who've been collaborators for more than a decade, intend to pursue the molecular mechanisms by which these chromosomal translocations occur. "I think it's important to understand them," he says, "because eventually we might be able to prevent these dangerous chromosome fusions."

Joseph Bonner | EurekAlert!
Further information:
http://www.rockefeller.edu

Further reports about: ATM DNA breaks chromosomal prevent

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>