Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Critical protein prevents DNA damage from persisting through generations

02.07.2007
A protein long known to be involved in protecting cells from genetic damage has been found to play an even more important role in protecting the cell's offspring. New research by a team of scientists at Rockefeller University, Howard Hughes Medical Institute and the National Cancer Institute shows that the protein, known as ATM, is not only vital for helping repair double-stranded breaks in DNA of immune cells, but is also part of a system that prevents genetic damage from being passed on when the cells divide.

Early in the life of B lymphocytes -- the immune cells responsible for hunting down foreign invaders and labeling them for destruction -- they rearrange their DNA to create various surface receptors that can accurately identify different intruders, a process called V(D)J recombination. Now, in an study published online today in the journal Cell, Rockefeller University Professor Michel Nussenzweig, in collaboration with his brother André Nussenzweig at NCI and their colleagues, shows that when the ATM protein is absent, chromosomal breaks created during V(D)J recombination go unrepaired, and checkpoints that normally prevent the damaged cell from replicating are lost.

Normal lymphocytes contain a number of restorative proteins, whose job it is to identify chromosomal damage and repair it or, if the damage is irreparable, prevent the cell from multiplying. Earlier research by André and Michel Nussenzweig, who is an investigator at HHMI, had identified other DNA repair proteins that are important during different phases of a B lymphocyte's life. It was during one of these studies, which examined genetic damage late in the life of a B cell, that they came across chromosomal breaks that could not be explained.

So the researchers began to look into the potential role of V(D)J recombination. "We were not expecting it to be responsible for the breaks we were seeing," says Michel, Sherman Fairchild Professor and head of the Laboratory of Molecular Immunology. "Because for it to be responsible, the breaks would have had to happen early on, the cell would have to divide, mature, maintain the breaks, and stay alive with broken chromosomes."

... more about:
»ATM »DNA »breaks »chromosomal »prevent

This, in fact, was precisely what they found.

The ATM protein appears to have two roles in a B cell: It helps repair the DNA double-strand breaks, and it activates the cell-cycle checkpoint that prevents genetically damaged cells from dividing. "ATM is required for a B cell to know that it has a broken chromosome. And if it doesn't know that it seems to be able to keep on going," says Michel.

Since the ATM protein is mutated in a number of lymphomas -- cancers of the lymph and immune system -- the new finding suggests to researchers that the lymphocytes could have been living with DNA damage for a long time, and that this damage likely plays a role in later chromosomal translocations, rearrangements of genetic materials that can lead to cancer.

Michel and his brother, who've been collaborators for more than a decade, intend to pursue the molecular mechanisms by which these chromosomal translocations occur. "I think it's important to understand them," he says, "because eventually we might be able to prevent these dangerous chromosome fusions."

Joseph Bonner | EurekAlert!
Further information:
http://www.rockefeller.edu

Further reports about: ATM DNA breaks chromosomal prevent

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>