Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of cell's 'antenna' linked to cancer's development

02.07.2007
Fox Chase Cancer Center researchers described dismantling proteins in journal Cell

Submarines have periscopes. Insects have antennae. And increasingly, biologists are finding that most normal vertebrate cells have cilia, small hair-like structures that protrude like antennae into the surrounding environment to detect signals that control cell growth. In a new study published in the June 29 issue of Cell, Fox Chase Cancer Center researchers describe the strong link between ciliary signaling and cancer and identify the rogue engineers responsible for dismantling the cell’s antenna.

Cilia-based sensing has important roles in sight, smell and motion detection and in helping an embryo develop into a normal baby. Defects in cilia can produce a range of disorders, including kidney cysts, infertility, respiratory problems, reversal of organs (for example, heart on the right) and a predisposition to obesity, diabetes and high blood pressure. In each case, cells fail to appropriately detect growth-controlling signals and develop abnormally. Now, researchers are adding cancer to this list.

“Many cancers arise from defects in cellular signaling systems, and we think we have just identified a really exciting signaling connection,” Fox Chase Cancer Center molecular biologist Erica A. Golemis, Ph.D., points out. In the new study, Golemis and her Fox Chase colleagues found that two proteins with important roles in cancer progression and metastasis, HEF1 and Aurora A, have an unexpected role in controlling the temporary disappearance of cilia during normal cell division, by turning on a third protein, HDAC6. This action causes the “antenna” to be dismantled in an untimely way.

... more about:
»Disease »Golemis »HEF1 »Kidney »PKD »cilia

Why cilia come and go on normal cells is not entirely understood, but scientists increasingly suspect that it may play a role in timing the cell division process. Commonly, cancer cells have entirely lost their cilia, and this absence may help explain why tumors fail to respond properly to environmental cues that cause normal cells to stop growing. Hence, the discovery that too much HEF1 and Aurora A cause cilia to disassemble provides important hints into what may be happening in cancers.

Defects in cilia have already been identified in one disease that represents a significant public health burden. Polycystic kidney disease, or PKD, arises from genetic mutations that cause flawed kidney-cell ciliary signaling. PKD is the most common serious hereditary disease, affecting more than 600,000 Americans and 12.5 million people worldwide.

In this incurable syndrome, patients develop numerous, fluid-filled cysts on the kidneys. For many patients, chronic pain is a common problem. PKD leads to kidney failure in about half of cases, requiring kidney dialysis or a kidney transplant.

The proteins involved in dismantling the cilia are no strangers to Golemis and her team. Golemis has been studying HEF1 for over a decade, since she first identified the gene. She first discovered that HEF1 has a role in controlling normal cell movement and tumor cell invasion. Golemis’ laboratory has also shown that Aurora A and HEF1 interact to initiate mitosis (chromosome separation) during cell division.

Suggestively, many cancers produce too much of the Aurora A protein, including breast and colorectal cancers and leukemia. In 2006, excessive production of HEF1 (also known as NEDD9) was found to drive metastasis in over a third of human melanomas, while HEF1 signaling also contributes to the aggressiveness of some brain cancers (glioblastomas).

“Now there’s a new activity for these proteins at cilia,” said co-author Elizabeth P. Henske, M.D., a medical oncologist and genetics researcher who studies the genetic basis of kidney tumors. This complex HEF1 and Aurora A function may mean the increased levels of these proteins in cancer affect cellular response to multiple signaling pathways, rather like a chain reaction highway accident.

Clinical Application

The research has significant implications for the understanding and treatment of cancer. The experiments leading to the new paper showed that “small-molecule inhibitors of Aurora A and HDAC6 selectively stabilize cilia,” the authors concluded, “suggesting a novel mode of action for these clinical agents.” Clinical trials of such inhibitors have already begun, so learning more about the mechanisms of their targets is important in understanding how these agents work and who might benefit from them.

“It is also tantalizing to consider that closer connections exist between dysplastic disorders leading to cysts and cancer than have previously been appreciated,” the authors wrote. “Overall, deregulated Aurora A/HEF1/HDAC6 signaling may have broad implications for studies of human development and disease.”

The authors are now investigating possible roles for HEF1 and Aurora A in PKD. They are intrigued by the fact that a study published last year showed that important gene, PKHD1, commonly mutated in PKD has also been found as a target of mutation in colorectal cancer.

Karen Mallet | EurekAlert!
Further information:
http://www.fccc.edu

Further reports about: Disease Golemis HEF1 Kidney PKD cilia

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>