Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stressed-out African naked mole-rats may provide environmental and genetic clues about infertility in humans

A tiny, blind, hairless subterranean rodent that lives in social colonies in the harsh, semi-arid conditions of Africa could shed light on stress-related infertility in humans, the 23rd annual meeting of the European Society of Human Reproduction and Embryology will hear.

Dr Chris Faulkes, a senior lecturer at the School of Biological & Chemical Sciences, Queen Mary, University of London, will tell the conference that the African naked mole-rat is at the extreme end of a continuum of socially-induced reproductive suppression among mammals, with other examples including primates such as marmosets and tamarins, mongooses and members of the dog family (such as wolves and jackals).

The naked mole-rat lives in colonies of between 100-300 animals, but only the “queen” reproduces, suppressing fertility in both the females and the males around her by bullying them.

Dr Faulkes said: “The queen exerts her dominance over the colony by, literally, pushing the other members of the colony around. She ‘shoves’ them to show who’s boss. We believe that the stress induced in the lower-ranking animals by this behaviour affects their fertility. There appears to be a total block to puberty in almost all the non-breeding mole-rats so that their hormones are kept down and their reproductive tracts are under-developed.

“Currently, we think that the behavioural interactions between the queen and the non-breeders are translated into the suppression of certain fertility hormones (luteinizing and follicle stimulating hormones). In the non-breeding females this has the effect of suppressing the ovulatory cycle, while in the non-breeding males it causes lower testosterone concentrations, and lower numbers of sperm. In most non-breeding males, sperm that are present are non-motile.

“The queen also seems to exert control over the breeding males, so that concentrations of their testosterone are suppressed except when she is ready to mate.”

However, this stress-related block to fertility is reversible. When the queen dies, the other non-breeding, highest ranking females battle it out for dominance, with the winner rapidly becoming reproductively active.

“Studies of dominance within colonies have revealed that breeding animals have the highest social rank. Furthermore, concentrations of urinary testosterone, a hormone associated with aggression, in the queen and non-breeders of both sexes correlated significantly with rank position. In experiments where the queen is removed from her colony, reproductive activation in the female taking over as queen was accompanied by the development and expression of aggressive behaviour in the form of ‘shoving’. These succeeding females were also previously high ranking and had relatively high concentrations of urinary testosterone. This supports the hypothesis that the attainment and maintenance of reproductive status in the queen, and control of the social order of the colony, is related to dominance behaviour,” said Dr Faulkes.

Natural cues such as changes in day length and social stress act through areas of the brain that control reproduction and, as it is likely that such neuroendocrine pathways are similar across species, understanding how they work in naked mole-rats could lead to a better understanding of the mechanisms involved in some stress-related infertility in humans. Dr Faulkes said: “Social suppression of reproduction in marmoset monkeys is very similar to that in naked mole-rats, and as these are primates the applications to understanding human stress-related infertility aren't so far fetched.

“The neurobiological process underlying the way mammals respond to social and environmental cues are still largely unknown,” he continued. “In a wider comparative study of African mole-rat species, we are also researching into genes that may give rise to the quite different forms of social bonding and affiliative behaviours observed in mole-rats. Studies on voles by researchers in the US have shown that complex behaviours like monogamy and promiscuity can be influenced by single genes that differ among species in their patterns of expression in the brain.

“Humans also vary widely in the way in which they form social bonds with their partners, offspring and kin. By making careful comparisons with model species like mole-rats, we may be able to tease apart the relative contribution of genes, environment, up-bringing and culture to complex social behaviour in our own species.”

For the African naked mole-rat, the advantages of their social organisation mean that almost all the members of the colony are co-operating and directing their energies towards foraging for food in order for the whole community to survive, rather than indulging in physically exhausting mating and reproductive behaviour. The “workers” dig a network of tunnels, often several kilometres long, which they use to find their food of roots and tubers, while the “soldiers” defend the colony against foreign mole-rats and predators such as snakes.

“By living in large social groups with a co-operative non-breeding workforce, naked mole-rats are able to exploit an ecological niche where solitary animals or small groups would be unlikely to survive,” said Dr Faulkes.

Emma Mason | alfa
Further information:

Further reports about: Faulkes colony concentrations dominance infertility naked non-breeding queen testosterone

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>