Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Says Sugar Coated Proteins Seal in a Memory of Diabetes

29.06.2007
Researchers at the University of Warwick’s Warwick Medical School have uncovered a process that locks the body’s metabolism in a diabetic state after only relatively limited exposure to high glucose levels.

Researchers were already aware that there seems to be a point of no return in the onset of diabetes. This was apparent in the Diabetes Complications and Control Trial (DCCT) in the 1990s when Type 1 diabetic patients were either placed on standard or intensive treatment regimens to normalize their glucose levels. Because complications were so profoundly reduced in patients with tight glucose control, all the remaining DCCT patients were switched early onto intensive therapy. However a follow-up study found that several years after switching to intensive therapy the patients who started the trial on only the standard treatment regimen continued to have more complications than those who received intensive therapy throughout the trial.

Research since has speculated that exposure to high glucose levels quickly creates a metabolic memory in which diabetes persists long after glucose levels have been corrected. Research to date suggested that oxidation played a role but the exact mechanism was unknown.

The Warwick research team, led by Dr Antonio Ceriello, have now proven that the damage seems to be done in a process called glycation when early on in a period of high glucose levels glucose sugar molecules are able to bind to proteins in the mitochondria of cells (the parts of cells governing the production and regulation of energy). This persists even if glucose levels later fall to normal. This inhibits and distorts the mitochondria’s normal function and results in an overabundance of the production of free radicals (or Reactive Oxygen Species – ROS) which cause oxidation and thus continued diabetic complications.

The Warwick Medical School researchers proved their hypothesis by taking tissue and exposing it to 2 weeks of high levels of glucose, followed by one week of normal glucose – however for half the tissue they also applied several antioxidants at the end of the two weeks of high glucose. The tissue without antioxidants levels of glucose stress remained high but where antioxidants had been applied there was a dramatic fall in the incidence of free radicals and there was also a significant drop in 5 of the 6 key markers for high glucose stress.

The Warwick Medical School research confirms the need for very early tight control of glucose levels to avoid diabetic complication and that that control must be supplemented with the use of antioxidant agents to mitigate the progression of complications.

However long term use of antioxidants can in itself produce health problems so in a further research published this month the Warwick Medical School team have tested the use of the AT-1 receptor blocker Telmisartan and found it can be used in exactly the same way to suppress the build up of free radicals without the side affects that long term use of antioxidants would cause.

Dr Ceriello is now beginning to look at how to move beyond simply suppressing the problematic production of free radicals and actually finding ways of reversing the glycation process itself thus erasing the harmful "metabolic memory".

Dr Ceriello’s paper "Reactive oxygen species mediate a cellular ‘memory’ of high glucose stress signaling" has just been published in Diabetologia DOI 10.1007/s00125-007-0684-2. The second paper, about to be published in Diabetes Care, is entitled "Antioxidants and Free Radicals, Endothelial Dysfunction, Oxidative and Nitrosative Stress covers his work on the AT-1 receptor blocker Telmisartan.

Peter Dunn | alfa
Further information:
http://www.warwick.ac.uk

Further reports about: Antioxidant free radicals glucose levels intensive radicals

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>