Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Says Sugar Coated Proteins Seal in a Memory of Diabetes

29.06.2007
Researchers at the University of Warwick’s Warwick Medical School have uncovered a process that locks the body’s metabolism in a diabetic state after only relatively limited exposure to high glucose levels.

Researchers were already aware that there seems to be a point of no return in the onset of diabetes. This was apparent in the Diabetes Complications and Control Trial (DCCT) in the 1990s when Type 1 diabetic patients were either placed on standard or intensive treatment regimens to normalize their glucose levels. Because complications were so profoundly reduced in patients with tight glucose control, all the remaining DCCT patients were switched early onto intensive therapy. However a follow-up study found that several years after switching to intensive therapy the patients who started the trial on only the standard treatment regimen continued to have more complications than those who received intensive therapy throughout the trial.

Research since has speculated that exposure to high glucose levels quickly creates a metabolic memory in which diabetes persists long after glucose levels have been corrected. Research to date suggested that oxidation played a role but the exact mechanism was unknown.

The Warwick research team, led by Dr Antonio Ceriello, have now proven that the damage seems to be done in a process called glycation when early on in a period of high glucose levels glucose sugar molecules are able to bind to proteins in the mitochondria of cells (the parts of cells governing the production and regulation of energy). This persists even if glucose levels later fall to normal. This inhibits and distorts the mitochondria’s normal function and results in an overabundance of the production of free radicals (or Reactive Oxygen Species – ROS) which cause oxidation and thus continued diabetic complications.

The Warwick Medical School researchers proved their hypothesis by taking tissue and exposing it to 2 weeks of high levels of glucose, followed by one week of normal glucose – however for half the tissue they also applied several antioxidants at the end of the two weeks of high glucose. The tissue without antioxidants levels of glucose stress remained high but where antioxidants had been applied there was a dramatic fall in the incidence of free radicals and there was also a significant drop in 5 of the 6 key markers for high glucose stress.

The Warwick Medical School research confirms the need for very early tight control of glucose levels to avoid diabetic complication and that that control must be supplemented with the use of antioxidant agents to mitigate the progression of complications.

However long term use of antioxidants can in itself produce health problems so in a further research published this month the Warwick Medical School team have tested the use of the AT-1 receptor blocker Telmisartan and found it can be used in exactly the same way to suppress the build up of free radicals without the side affects that long term use of antioxidants would cause.

Dr Ceriello is now beginning to look at how to move beyond simply suppressing the problematic production of free radicals and actually finding ways of reversing the glycation process itself thus erasing the harmful "metabolic memory".

Dr Ceriello’s paper "Reactive oxygen species mediate a cellular ‘memory’ of high glucose stress signaling" has just been published in Diabetologia DOI 10.1007/s00125-007-0684-2. The second paper, about to be published in Diabetes Care, is entitled "Antioxidants and Free Radicals, Endothelial Dysfunction, Oxidative and Nitrosative Stress covers his work on the AT-1 receptor blocker Telmisartan.

Peter Dunn | alfa
Further information:
http://www.warwick.ac.uk

Further reports about: Antioxidant free radicals glucose levels intensive radicals

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>