Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery turns research into tuberculosis and leprosy on its head

Researchers at the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AVL) have made the discovery that tuberculosis and leprosy bacteria follow a different path into the host cell than that which for forty years scientists had always maintained.

The insight has huge implications for an understanding of these diseases and for more effective medicines to combat TB, leprosy and even cervical cancer. Cell magazine will be publishing the findings of Prof Dr Peter Peters and his colleagues on 28th June.

High-resolution electron microscopes and tomography have enabled Peters, Van der Wel and their colleagues to map the cell's internal organisation. Knowledge of differing cell organelles that also play a role in the development of cancer is important when trying to understand fundamental cell processes. During research into the fagosome, a pustule in the cell, they stumbled upon the unexpected discovery that has turned research into TB and leprosy on its head.

Alternative path
Peters and his colleagues have demonstrated that the TB bacterium Mycobacterium tuberculosis follows a different path in the host cell than its weaker younger brother Mycobacterium bovis BCG, used as TB vaccine as well. The absorption of bacteria into cells is also known as fagocytose and is the process whereby the membrane of a cell envelopes the bacterium thus forming a pustule (fagosome) within the cell in which the enveloped bacterium can be securely stored.

Once inside the body BCG is stored in the fagosome but within two days the contagious TB bacterium bursts through the membrane wall of the fagosome. The bacterium falls freely into a cell landing in a food-rich environment where it rapidly multiplies. Peters and Van der Wel demonstrated how the leprosy bacterium burst forth in a similar way. Mycobacterium leprae is a sister of the TB bacterium.

Till now scientists thought that the fagosome acted as a reservoir whence not only the BCG vaccine but also the contagious bacterium slowly multiplied. Now, however, not only does it appear that the bacterium follows an entirely different path but also multiplies quicker when lying free inside the cell.

Cutting bacterium
The researchers discovered that when bursting out the TB bacterium that causes illness and the leprosy bacterium are able to cut the membrane wall of the fagosome. Whilst carrying out a double blind test they were able to establish that the RD1 area was involved in the process. This is where the bacterium genes lie that can cut through the membrane wall. Whilst mutating in the RD1 area the bacterium remained imprisoned in the fagosome but when the mutation was artificially repaired the bacteria were once again able to break loose. The researchers have now patented the RD1 area.
A vaccine to combat cervical cancer, TB and leprosy
This discovery has consequences when developing new medicines. The current BCG vaccine provides little protection because it provokes a weak immunological reaction. In contrast the TB bacterium provokes a strong immunological reaction through its alternative path. In follow-up research Peters at the NKI-AVL Hospital and Van der Wel at the Free University Amsterdam Medical Centre are planning to fix the current BCG vaccine so that, just like the TB bacterium, it will fall freely and land in the cell. They think that in this way more powerful, and hopefully less expensive, vaccines can be developed for the Third World to combat TB as well as cervical cancer and leprosy.

The Dutch Leprosy Foundation, the Netherlands Ministry of Foreign Affairs and a subsidiary of the Bill and Melissa Gates Foundation have financed this research.

Frederique Melman | alfa
Further information:

Further reports about: BCG TB bacterium Tuberculosis bacterium fagosome leprosy

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>