Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery turns research into tuberculosis and leprosy on its head

29.06.2007
Researchers at the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AVL) have made the discovery that tuberculosis and leprosy bacteria follow a different path into the host cell than that which for forty years scientists had always maintained.

The insight has huge implications for an understanding of these diseases and for more effective medicines to combat TB, leprosy and even cervical cancer. Cell magazine will be publishing the findings of Prof Dr Peter Peters and his colleagues on 28th June.

High-resolution electron microscopes and tomography have enabled Peters, Van der Wel and their colleagues to map the cell's internal organisation. Knowledge of differing cell organelles that also play a role in the development of cancer is important when trying to understand fundamental cell processes. During research into the fagosome, a pustule in the cell, they stumbled upon the unexpected discovery that has turned research into TB and leprosy on its head.

Alternative path
Peters and his colleagues have demonstrated that the TB bacterium Mycobacterium tuberculosis follows a different path in the host cell than its weaker younger brother Mycobacterium bovis BCG, used as TB vaccine as well. The absorption of bacteria into cells is also known as fagocytose and is the process whereby the membrane of a cell envelopes the bacterium thus forming a pustule (fagosome) within the cell in which the enveloped bacterium can be securely stored.

Once inside the body BCG is stored in the fagosome but within two days the contagious TB bacterium bursts through the membrane wall of the fagosome. The bacterium falls freely into a cell landing in a food-rich environment where it rapidly multiplies. Peters and Van der Wel demonstrated how the leprosy bacterium burst forth in a similar way. Mycobacterium leprae is a sister of the TB bacterium.

Till now scientists thought that the fagosome acted as a reservoir whence not only the BCG vaccine but also the contagious bacterium slowly multiplied. Now, however, not only does it appear that the bacterium follows an entirely different path but also multiplies quicker when lying free inside the cell.

Cutting bacterium
The researchers discovered that when bursting out the TB bacterium that causes illness and the leprosy bacterium are able to cut the membrane wall of the fagosome. Whilst carrying out a double blind test they were able to establish that the RD1 area was involved in the process. This is where the bacterium genes lie that can cut through the membrane wall. Whilst mutating in the RD1 area the bacterium remained imprisoned in the fagosome but when the mutation was artificially repaired the bacteria were once again able to break loose. The researchers have now patented the RD1 area.
A vaccine to combat cervical cancer, TB and leprosy
This discovery has consequences when developing new medicines. The current BCG vaccine provides little protection because it provokes a weak immunological reaction. In contrast the TB bacterium provokes a strong immunological reaction through its alternative path. In follow-up research Peters at the NKI-AVL Hospital and Van der Wel at the Free University Amsterdam Medical Centre are planning to fix the current BCG vaccine so that, just like the TB bacterium, it will fall freely and land in the cell. They think that in this way more powerful, and hopefully less expensive, vaccines can be developed for the Third World to combat TB as well as cervical cancer and leprosy.

The Dutch Leprosy Foundation, the Netherlands Ministry of Foreign Affairs and a subsidiary of the Bill and Melissa Gates Foundation have financed this research.

Frederique Melman | alfa
Further information:
http://www.nki.nl

Further reports about: BCG TB bacterium Tuberculosis bacterium fagosome leprosy

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>