Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibodies protect mice from developing respiratory tularemia

28.06.2007
WHAT: The respiratory form of tularemia, a potentially serious bacterial disease, is a significant public health concern because it is highly infectious, it has a high mortality rate if untreated, and it could be introduced into a population in an intentional act of bioterror.

Though much research is focused on developing drugs and vaccines targeted to the bacterium that causes tularemia, Francisella tularensis, little is known about the role that antibodies play in protecting against infection.

A research team led by Dennis W. Metzger, Ph.D., at the Albany Medical College in New York has now shown that treating laboratory mice with a serum containing tularemia-specific antibodies protects the mice against F. tularensis, not only if given before exposure to lethal doses of inhalational F. tularensis but also up to 48 hours after exposure. These findings suggest a possible alternative treatment approach to traditional antibiotics.

In the absence of a licensed vaccine, such an approach might prove especially useful early on in the case of an intentional act of bioterrorism. The tularemia-specific antibodies may enhance an individual’s immune responses to the bacteria after exposure, in essence acting as a surrogate vaccine.

... more about:
»Protect »tularemia

Other advantages of this approach over conventional methods of treatment include the fact that it is rapid and specific; it could be used in people with weakened immune systems; and it minimizes the chances of contributing to treatment-resistant bacteria.

Ken Pekoc | EurekAlert!
Further information:
http://www.nih.gov
http://www.niaid.nih.gov

Further reports about: Protect tularemia

More articles from Life Sciences:

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>