Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nanoparticles hitchhike on red blood cells: a potential new method for drug delivery

Researchers at the University of California, Santa Barbara have discovered that attaching polymeric nanoparticles to the surface of red blood cells dramatically increases the in vivo lifetime of the nanoparticles. The research, published in the July 07 issue of Experimental Biology and Medicine, could offer applications for the delivery of drugs and circulating bioreactors.

Polymeric nanoparticles are excellent carriers for delivering drugs. They protect drugs from degradation until they reach their target and provide sustained release of drugs. Polymeric nanoparticles, however, suffer from one major limitation: they are quickly removed from the blood, sometimes in minutes, rendering them ineffective in delivering drugs.

The research team, led by Samir Mitragotri, a professor of chemical engineering, and Elizabeth Chambers, a recent doctoral graduate, found that nanoparticles can be forced to remain in the circulation when attached to red blood cells. The particles eventually detach from the blood cells due to shear forces and cell-to-cell interactions, and are cleared from the system by the liver and spleen. Red blood cell circulation is not affected by attaching the nanoparticles.

“Attachment of polymeric nanoparticles to red blood cells combines the advantages of the long circulating lifetime of the red blood cell, and their abundance, with the robustness of polymeric nanoparticles,” said Mitragotri. “Using red blood cells to extend the circulation time of the particles avoids the need to modify the surface chemistry of the entire particle, which offers the potential to attach chemicals to the exposed surface for targeting applications.”

... more about:
»Particle »circulation »nanoparticles

The researchers have learned that particles adhered to red blood cells can escape phagocytosis because red blood cells have a knack for evading macrophages. Nanoparticles aren’t the first to be piggybacking on red blood cells; the strategy has already been adopted by certain bacteria, such as hemobartonella, that adhere to RBCs and can remain in circulation for several weeks.

The researchers say that it may be possible to keep the nanoparticles in circulation for a relatively long time, theoretically up to the circulation lifetime of a red blood cell – which is 120 days – if the binding between particles and the red blood cells is strengthened. The methodology is applicable to drugs that are effective while still attached to a red blood cell, although the researchers say that slow release from the red blood cell surface is also feasible.

Mitragotri says “this mode of prolonging particle circulation has significant implications in drug delivery, potentially leading to new treatments for a broad variety of conditions such as cancer, blood clots and heart disease”. Dr. Steven R. Goodman, Editor-in-Chief of the journal, said “this study dealing with the attachment of nanoparticles to red blood cells may also have important implications for future treatment of hematologic disorders. This fusion of modern nanobioscience with cell biology and hematology is precisely the type of interdisciplinary study that the new Experimental Biology and Medicine is interested in publishing.” Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences.

Dr. Samir Mitragotri | EurekAlert!
Further information:

Further reports about: Particle circulation nanoparticles

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>