Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Frog molecule could provide drug treatment for brain tumours

A synthetic version of a molecule found in the egg cells of the Northern Leopard frog (Rana pipiens) could provide the world with the first drug treatment for brain tumours.

Known as Amphinase, the molecule recognises the sugary coating found on a tumour cell and binds to its surface before invading the cell and inactivating the RNA it contains, causing the tumour to die.

In new research published in the Journal of Molecular Biology, scientists from the University of Bath (UK) and Alfacell Corporation (USA) describe the first complete analysis of the structural and chemical properties of the molecule.

Although it could potentially be used as a treatment for many forms of cancer, Amphinase offers greatest hope in the treatment of brain tumours, for which complex surgery and chemotherapy are the only current treatments.

... more about:
»Amphinase »ribonuclease »trials »tumour

“This is a very exciting molecule,” said Professor Ravi Acharya, from the Department of Biology & Biochemistry at the University of Bath.

“It is rather like Mother Nature’s very own magic bullet for recognising and destroying cancer cells.

“It is highly specific at hunting and destroying tumour cells, is easily synthesised in the laboratory and offers great hope as a therapeutic treatment of the future.”

Amphinase is a version of a ribonuclease enzyme that has been isolated from the oocytes (egg cells) of the Northern Leopard frog.

Ribonucleases are a common type of enzyme found in all organisms. They are responsible for tidying up free-floating strands of RNA cells by latching on to the molecule and cutting it into smaller sections.

In areas of the cell where the RNA is needed for essential functions, ribonucleases are prevented from working by inhibitor molecules. But because Amphinase is an amphibian ribonuclease, it can evade the mammalian inhibitor molecules to attack the cancer cells.

As a treatment, it is most likely to be injected into the area where it is needed. It will have no effect on other cells because it is only capable of recognising and binding to the sugar coating of tumour cells.

“Amphinase is in the very early stages of development, so it is likely to be several years and many trials before it could be developed into a treatment for patients,” said Professor Acharya and his colleagues Drs Umesh Singh and Daniel Holloway.

“Having said that, the early data is promising and through this study we have provided the kind of information needed if approval for use is requested in the future.”

Amphinase is the second anti-tumour ribonuclease to be isolated by Alfacell Corporation from Rana pipiens oocytes.

The other, ONCONASE(R) (ranpirnase), is currently in late-stage clinical trials as a treatment for unresectable malignant mesothelioma, a rare and fatal form of lung cancer, and in Phase I/II clinical trials in non-small cell lung cancer and other solid tumours.

“We are pleased with the superb work performed by Professor Acharya and his talented team at the University of Bath,” commented Kuslima Shogen, Alfacell’s chairman and chief executive officer.

“Their work is critical to the continued development and understanding of our family of novel ribonuclease based therapeutics with the potential to help patients suffering from cancer and other dismal diseases.”

The company is now working on pre-clinical trials of Amphinase with a view to beginning clinical trials in the future.

Andrew McLaughlin | alfa
Further information:

Further reports about: Amphinase ribonuclease trials tumour

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>