Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frog molecule could provide drug treatment for brain tumours

27.06.2007
A synthetic version of a molecule found in the egg cells of the Northern Leopard frog (Rana pipiens) could provide the world with the first drug treatment for brain tumours.

Known as Amphinase, the molecule recognises the sugary coating found on a tumour cell and binds to its surface before invading the cell and inactivating the RNA it contains, causing the tumour to die.

In new research published in the Journal of Molecular Biology, scientists from the University of Bath (UK) and Alfacell Corporation (USA) describe the first complete analysis of the structural and chemical properties of the molecule.

Although it could potentially be used as a treatment for many forms of cancer, Amphinase offers greatest hope in the treatment of brain tumours, for which complex surgery and chemotherapy are the only current treatments.

... more about:
»Amphinase »ribonuclease »trials »tumour

“This is a very exciting molecule,” said Professor Ravi Acharya, from the Department of Biology & Biochemistry at the University of Bath.

“It is rather like Mother Nature’s very own magic bullet for recognising and destroying cancer cells.

“It is highly specific at hunting and destroying tumour cells, is easily synthesised in the laboratory and offers great hope as a therapeutic treatment of the future.”

Amphinase is a version of a ribonuclease enzyme that has been isolated from the oocytes (egg cells) of the Northern Leopard frog.

Ribonucleases are a common type of enzyme found in all organisms. They are responsible for tidying up free-floating strands of RNA cells by latching on to the molecule and cutting it into smaller sections.

In areas of the cell where the RNA is needed for essential functions, ribonucleases are prevented from working by inhibitor molecules. But because Amphinase is an amphibian ribonuclease, it can evade the mammalian inhibitor molecules to attack the cancer cells.

As a treatment, it is most likely to be injected into the area where it is needed. It will have no effect on other cells because it is only capable of recognising and binding to the sugar coating of tumour cells.

“Amphinase is in the very early stages of development, so it is likely to be several years and many trials before it could be developed into a treatment for patients,” said Professor Acharya and his colleagues Drs Umesh Singh and Daniel Holloway.

“Having said that, the early data is promising and through this study we have provided the kind of information needed if approval for use is requested in the future.”

Amphinase is the second anti-tumour ribonuclease to be isolated by Alfacell Corporation from Rana pipiens oocytes.

The other, ONCONASE(R) (ranpirnase), is currently in late-stage clinical trials as a treatment for unresectable malignant mesothelioma, a rare and fatal form of lung cancer, and in Phase I/II clinical trials in non-small cell lung cancer and other solid tumours.

“We are pleased with the superb work performed by Professor Acharya and his talented team at the University of Bath,” commented Kuslima Shogen, Alfacell’s chairman and chief executive officer.

“Their work is critical to the continued development and understanding of our family of novel ribonuclease based therapeutics with the potential to help patients suffering from cancer and other dismal diseases.”

The company is now working on pre-clinical trials of Amphinase with a view to beginning clinical trials in the future.

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk/news/2007/6/26/amphinase.html

Further reports about: Amphinase ribonuclease trials tumour

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>