Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genetic marker characterizes aggressiveness of cancer cells

26.06.2007
microRNA suppresses genes that trigger cancer progression

Levels of a small non-coding RNA molecule called let-7 appear to define different stages of cancer better than some of the "classical" markers for tumor progression, researchers from the University of Chicago report in the June 25, 2007, early online edition of the Proceedings of the National Academy of Sciences.

By suppressing genes that are active in the developing embryo, silenced just before birth, and re-activated years later in many advanced cancers, the let-7 family of "microRNAs"—tiny snippets of RNA that can put the brakes on expression of selected genes—appears to prevent human cancer cells from reasserting their prenatal capacity to divide rapidly, travel and spread.

Since they were first discovered in 1993, there had been growing interest in microRNAs and their role in gene regulation. Hundreds of these tiny molecules, about 20 nucleotides in length, have been discovered, scattered throughout the human genome. They act in most cases by attaching themselves to specific sites on messenger RNA, where they block ribosome access and thus prevent production of that protein.

... more about:
»HGMA2 »HMGA2 »MicroRNA »RNA »let-7 »ovarian »ovarian cancer

"There may be no human cancer that is not regulated by microRNAs," said study author Marcus Peter, professor in the Ben May Department for Cancer Research at the University of Chicago, "and among microRNAs, let-7 appears to be a key player in preventing a cancer from becoming more aggressive."

"We found that expression levels of let-7 can discriminate more effectively between more and less advanced stages of cancers than any other microRNA," Peter said. "We suspect that loss of members of the let-7 family may be a major determinant of cancer progression."

Understanding how microRNAs such as let-7 keep cancers in check could also point toward a whole new class of anti-cancer therapies, he suggested.

Peter and colleagues focused their initial studies on a standard panel, known as NCI60, of 60 human tumor cell lines that can genetically be divided into two large groups, which they called superclusters 1 and 2. Supercluster 1 cells may represent less differentiated, more aggressive stages of cancer. In contrast, supercluster 2 cells express a gene signature that is consistent with more differentiated, less aggressive cancers.

They tracked down one of let-7's primary targets, a gene called HMGA2, which is overexpressed in a wide variety of cancers. Tumor cells with high levels of let-7, the researchers found, had low levels of HGMA2 and tumor cells with low expression of let-7 expressed high amounts of HMGA2.

Next, they turned to a colleague, gynecologic oncologist Ernst Lengyel, an assistant professor of obstetrics and gynecology at the University of Chicago, whose research group focuses on ovarian cancer. Their theory was first confirmed with ovarian cancer cell lines and then the Peter/Lengyel team tested HGMA2 protein levels in tumor samples from 100 patients with ovarian cancer.

Neither normal ovarian tissue nor benign ovarian tumors expressed HGMA2, they found. However full blown carcinoma expresses large quantities of HMGA2. They also found that a high level of HGMA2 was highly correlated with poor prognosis, and that high HGMA2 levels were closely tied to low let-7 expression.

By combining the two measures, high HGMA2 and low let-7, they could separate the patients into two groups, and predict outcome. Five-year progression-free survival for patients with high let-7 and low HGMA2 was nearly 40 percent. For patients with low let-7 and high HGMA2, it fell to less than 10 percent.

"Our data suggests that human tumors can be divided into two major subtypes, the let-7hi and let-7lo-expressing tumor cells," the authors write. This separation may not be restricted to ovarian cancer, or to the NCI60 panel of tumor cells, they suggest, but could apply to a multitude of tumor types.

"There is growing evidence that large-scale gene-expression patterns can be regulated by microRNAs", Peter said. "Many of them are beginning to be expressed shortly before birth, where they turn off genes that were necessary for the rapidly developing embryo. Probably a number of embryonic genes, after being turned off for decades, are reexpressed in cancer cells, enabling those cells to regain their embryonic capacity to move around and invade other tissues."

The loss of let-7, the authors argue, could be seen as one crucial step in this process of tumor progression. One of its functions, they argue, is to maintain differentiated states by preventing the expression of embryonic genes such as HMGA2.

No rapid test of let-7 level is available for clinical use. "The levels are difficult to quantify in clinical samples", Peter said but "technology is exploding right now. We may be able to do this clinically before too long."

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

Further reports about: HGMA2 HMGA2 MicroRNA RNA let-7 ovarian ovarian cancer

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>